Стивен Строгац.

Ритм Вселенной. Как из хаоса возникает порядок



скачать книгу бесплатно

Это может показаться абсурдным: если плохие точки существуют, то вы можете полагать, что с вашим-то везением вы наверняка выберете плохую. Спешу вас успокоить: не выберете. Это практически то же самое, как если бы вы бросали дротик в мишень для игры в «дартс» в надежде, что он попадет точно в разделительную линию между двумя соседними концентрическими областями. Это чрезвычайно маловероятно. А теперь представьте, что толщина этой разделительной линии стремится к нулю (а именно это требуется, если ее площадь должна равняться нулю). Теперь, надеюсь, вы понимаете, почему у вас практически нет шансов попасть дротиком в эту линию.

Идея о теоретическом существовании «плохих» точек принадлежала Ренни, хотя мы, разумеется, были заинтересованы в «хороших» точках. Стратегия Ренни напоминала концепцию отрицательного пространства, к которой прибегают художники: чтобы лучше уяснить интересующий вас объект, постарайтесь уяснить пространство, окружающее этот объект. В частности, Ренни придумал, как доказать, что «плохие» точки занимают нулевую площадь.

Чтобы составить некоторое представление о его доказательстве, сосредоточимся на наихудших из «плохих» точек, которые я буду называть «ужасными». Эти точки – самые непокорные в своем стремлении воспрепятствовать достижению синхронизма: они вообще не поддаются поглощениям. Когда система начинает свою работу с какой-либо ужасной точки, никакая из пар осцилляторов (и тем более не вся популяция осцилляторов) не сможет синхронизироваться.

Чтобы понять, почему ужасные точки не могут занимать площадь больше нулевой, вообразите все эти точки в виде некой совокупности и проанализируйте, что произойдет, когда мы применим наше преобразование ко всем точкам в такой совокупности. Каждая ужасная точка перескочит в какое-то другое место, но после такого преобразования она все равно останется ужасной. Это звучит почти как тавтология: если какая-либо точка никогда не приводит к поглощению, то после одной итерации нашего преобразования она все равно никогда не приведет к поглощению. Следовательно, новая точка также является ужасной. Поскольку первоначальная совокупность включала все ужасные точки (по определению), эта новая точка должна была бы где-то здесь появиться, чтобы она могла исполнить роль начальной.

Наш вывод заключается в том, что преобразованная совокупность находится полностью внутри первоначальной совокупности. Могу предложить более наглядную аналогию: это похоже на хорошо известные вам фотографии «до» и «после», используемые в рекламе всевозможных диет для похудения. Преобразованная совокупность – похудевшая «после» – фотография – полностью содержится внутри толстой «до» – фотографии (как в рекламе диет для похудения).

До сих пор в нашем доказательстве не использовалась какая-либо информация о форме кривой заряда или величине «толчков». Когда мы в конечном счете учтем эти детали, мы придем к выводу, который, на первый взгляд, может показаться парадоксальным, хотя на самом деле он является решающим доводом в нашем доказательстве.

Нам с Ренни удалось доказать, что преобразование из «до» в «после» действует подобно функции увеличения масштаба в фотокопировальном аппарате. Любая совокупность точек, которую вы подаете на вход нашего преобразования, на его выходе оказывается увеличенной в том смысле, что ее суммарная площадь оказывается умноженной на коэффициент, больший 1. Неважно, какую именно совокупность вы выберете (как неважно и то, какое изображение вы поместите в фотокопировальный аппарат): увеличится площадь всех совокупностей. В частности, увеличится площадь совокупности ужасных точек. Но погодите, это означает, что совокупность ужасных точек становится толще, а не тоньше. Но это, похоже, противоречит тому, о чем мы говорили выше. Если быть более точным, проблема в том, что преобразованная версия совокупности ужасных точек должна находиться внутри исходной совокупности при том, что ее площадь также должна увеличиться, что кажется невозможным. Единственным условием, при котором эти два вывода могут быть совместимы, является нулевая площадь исходной совокупности (фотография «до» должна представлять собой изображение тонкого прута). В таком случае никакого противоречия нет: при умножении на число, большее 1, площадь исходной совокупности останется нулевой, поэтому преобразованная совокупность может поместиться внутри исходной совокупности. Но это именно то, что мы хотели продемонстрировать: ужасные точки занимают нулевую площадь. Именно поэтому вам никогда не удастся выбрать их, если вы будете выбирать начальное условие случайным образом. Не сможете вы выбрать и какие-либо другие «плохие» точки. Именно поэтому наступление синхронизма в такой модели является неизбежным.

Та же аргументация относится к любому другому количеству осцилляторов – с той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.

Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно должно развалиться, поскольку наша теорема без такого предположения недействительна. Если кривая заряда загибалась вверх, а не вниз – если напряжение растет все быстрее по мере приближения к пороговому значению, – то наше моделирование показывало, что рассматриваемая популяция осцилляторов вовсе не обязательно синхронизируется. Осцилляторы могут зациклиться в случайной картине хаотических запусков.

Этот тонкий момент зачастую ставил в тупик других математиков, когда я читал свои первые лекции по нашей работе: прежде чем я успевал дать развернутое пояснение этого момента, какой-нибудь критикан (а среди слушателей обязательно находился хотя бы один такой) прерывал меня и упрекал в тривиальности нашей теоремы: дескать, осцилляторы, конечно же, синхронизируются, поскольку все они идентичны и одинаково связаны друг с другом – а на какой же еще результат я рассчитывал? Но такое возражение слишком обманчиво: оно игнорирует слабое влияние кривой заряда. Синхронизм возникает с неизбежностью лишь в случае, когда эта кривая изгибается в «правильном» направлении. С биологической точки зрения, форма кривой заряда определяет, в какой момент толчки оказываются более сильными: в начале цикла (вблизи исходного состояния) или в конце цикла (вблизи порогового значения). Когда кривая заряда наклонена вниз, как в модели Пескина, данный толчок напряжения трансформируется в больший сдвиг фазы для осцилляторов, близких к пороговому значению, что в свою очередь гарантирует, что система будет синхронизирована, хотя понять, почему именно она будет синхронизирована, не так-то просто.

Сконструированное нами доказательство выводов, сделанных Пескином, оказалось первым строгим результатом, относящимся к популяции осцилляторов, обменивающихся внезапными импульсами. Что же касается реальных светлячков или клеток-ритмоводителей сердца, такая модель является очевидным упрощением. Она предполагает, что запуск одного осциллятора всегда подталкивает другие осцилляторы в направлении порога, продвигая таким образом их фазы вперед; реальные биологические осцилляторы могут, вообще говоря, сдвигать фазу как вперед (опережение), так и назад (запаздывание). Кроме того, тайские светлячки, которые являются самыми большими мастерами в части синхронизации – вид, известный как Pteroptyx malaccae, – используют совершенно другую стратегию[16]16
  Экспериментальные свидетельства разных стратегий перенастройки, используемых светлячками, изложены в статье Frank E. Hanson, “Comparative studies of firefly pacemakers,” Federation Proceedings 37 (1978), 2158–2164. Цель нашей математической модели никогда не заключалась в том, чтобы обеспечить большую реалистичность в этом отношении. Мы лишь хотели доказать правильность гипотезы Пескина и ссылались на светлячков как на самый наглядный пример этой абстракции, концепцию импульсно-связанных осцилляторов. Описание гораздо более достоверной с биологической точки зрения модели синхронизма светлячков можно найти в статье G. Bard Ermentrout, “An adaptive model for synchrony in the firefly Pteroptyx malaccae.” Journal of Mathematical Biology 29 (1991), pp. 571–585.


[Закрыть]
: они непрерывно корректируют частоту своих «внутренних часов», а не их фазу, в ответ на сторонние вспышки. По сути, они заставляют свои «внутренние часы» тикать быстрее или медленнее, вместо того чтобы переводить свою минутную стрелку немного вперед или назад. К тому же, предполагая, что все осцилляторы идентичны, наша модель не принимает во внимание генетическое разнообразие, присущее любой реальной популяции. И наконец, наше допущение, что все осцилляторы оказывают одинаковое воздействие друг на друга, является очень грубым описанием клеток сердца, которые влияют главным образом на своих ближайших соседей. Учитывая все эти ограничения нашего анализа, мы оказались не готовы к реакции, которую он должен был вызвать с неизбежностью.

В течение нескольких следующих лет было опубликовано более 100 статей, посвященных импульсно-связанным осцилляторам. Авторами этих статей были ученые, представлявшие множество дисциплин, начиная с нейробиологии и заканчивая геофизикой. Что касается нейробиологии, то теоретиков, изучающих модели нейронных сетей, категорически не устраивал преобладающий подход, согласно которому нейроны весьма грубо описывались средними скоростями их запуска (количеством скачков напряжения в секунду), а не фактическим распределением самих этих скачков во времени[17]17
  Одной из ранних работ, посвященных этому вопросу, была статья L. F. Abbott and C. van Vreeswijk, “Asynchronous states in neural networks of pulse-coupled oscillators,” Physical Review E 48 (1993), pp. 1483–1490.


[Закрыть]
. Предложенная нами новая модель импульсно-связанных осцилляторов идеально отвечала потребностям ученых-нейробиологов и духу времени в целом.

По случайному стечению обстоятельств или, может быть, в силу каких-то других причин в начале 1990-х годов ученые в других областях также размышляли над поведением систем такого рода. Например, влиятельный биофизик Джон Хопфилд, работающий в Калифорнийском технологическом институте, обнаружил связь между землетрясениями и импульсно-связанными нейронами[18]18
  John J. Hopfield, “Neurons, dynamics, and computation,” Physics Today 47 (1994), pp. 40–46; A. V. M. Herz and J. J. Hopfield, “Earthquake cycles and neural reverberations: Collective oscillations in systems with pulse-coupled threshold elements,” Physical Review Letters 75 (1995), pp. 1222–1225.


[Закрыть]
. В упрощенной модели землетрясения пласты земной коры постоянно воздействуют друг на друга, создавая напряжение, которое нарастает до тех пор, пока не будет достигнут некий порог. Затем эти пласты внезапно начинают скользить относительно друг друга; высвобождающаяся при этом энергия приводит к взрыву. Весь этот процесс напоминает постепенное повышение и внезапный скачок напряжения нейрона. В описанной выше модели землетрясения соскальзывания одного пласта может оказаться достаточно, чтобы запустить соскальзывание других пластов (точно так же, как запуск нейрона может вызвать цепную реакцию других разрядов в мозге). Эти каскады множащихся событий могут приводить к землетрясениям (или эпилептическим хватательным движениям у человека). В зависимости от того, какой именно оказывается конфигурация других элементов системы, результатом может быть либо едва различимый гул, либо сильное землетрясение.

Такая же математическая структура возникала в моделях других взаимодействующих систем, начиная с лесных пожаров и заканчивая массовыми вымираниями живых организмов. В каждом таком случае какой-то отдельно взятый элемент подвергается нарастающему давлению, продвигается в направлении некого порога, а затем внезапно высвобождает накопившееся напряжение и распространяет его на другие элементы, что способно вызвать эффект домино. Модели с таким характером широко обсуждались в начале 1990-х годов. Статистика каскадов – в основном небольших, но в нескольких случаях катастрофических – изучалась теоретически физиком Пером Баком и его сотрудниками в связи с тем, что они называли самоорганизующейся критичностью[19]19
  Сведения о самоорганизующейся критичности можно найти в книгах Per Bak, How Nature Works: The Science of Self-Organized Crincality (New York; Copernicus Books, 1999) и Mark Buchanan, Ubiquity: The Science of History… or Why the World Is Simpler Than We Think (New York: Crown, 2001).


[Закрыть]
.

Открытие, сделанное Хопфилдом, заключается в том, что самоораганизующася критичность может быть тесно связана с синхронизацией в импульсно-связанных системах осцилляторов. Интригующая возможность связи между этими двумя областями породила десятки статей, в которых исследовались возможные варианты связи[20]20
  С обзором литературы, которая увязывает самоорганизующуюся критичность с синхронизацией, можно ознакомиться в статье C. J. Perez, A. Corral, A. Didz-Guilera, K, Christensen, and A. Arenas, “On self-organized criticality and synchronization in lattice models of coupled dynamical systems,” International Journal of Modern Physics B 10 (1996), pp. 1111–1151.


[Закрыть]
. Этот эпизод служит примером того, как математики могут выявлять скрытую связь явлений, которые на первый взгляд кажутся не связанными между собой.

Наша работа привлекла также внимание средств массовой информации – в основном из-за ее связи со светлячками, которые вызывали у большинства людей детские воспоминания о летних вечерах, когда они ловили этих мерцающих насекомых в стеклянные банки[21]21
  См., например: Ivors Peterson, “Step in time,” Science News 140 (August 31, 1991), pp. 136–137; Ian Stewart, “All together now,” Nature 350 (1991), p. 557; Walter Sullivan, “A mystery of nature: Mangroves full of fireflies blinking in unison,” New York Times (August 13, 1991), p. C4.


[Закрыть]
. В результате этого повышенного внимания со стороны прессы в 1992 г. я получил восторженное письмо от женщины по имени Линн Фост, проживающей в Ноксвилле, Теннеси. В характерной для нее вежливой и непосредственной манере она была готова разрушить давний миф о синхронно мерцающих светлячках. Вот о чем она поведала мне в своем письме.

Я уверена, вам известно об этом. Поэтому хочу лишь напомнить о том, что в национальном парке «Грейт-Смоки Маунтин» вблизи г. Элкмонт, Теннеси, у мерцающих насекомых наблюдается что-то наподобие группового синхронизма. Сеансы мерцания у них происходят с середины июня и начинаются каждые сутки примерно в 10 часов вечера. После 6 секунд полной темноты тысячи насекомых в течение трех секунд с идеальным синхронизмом совершают шесть быстрых вспышек, после чего все они «потухают» еще на 6 секунд.

В Элкмонте у нас есть маленький домик (к сожалению, по распоряжению руководства национального парка, он должен быть снесен в декабре 1992 г.) и, насколько нам известно, этот конкретный вид группового синхронного мерцания наблюдается лишь на этой небольшой территории. Между тем это поистине завораживающее зрелище.

Описанные мною насекомые существенно отличаются от наших обычных светлячков, которые после наступления темноты просто загораются и потухают в произвольные моменты времени.

Далее Линн Фост рассказала в своем письме, что по другую сторону речушки, на берегу которой стоит их домик, светлячки, расположившиеся выше по склону холма, начинают свою последовательность свечений чуть раньше тех, которые расположились ниже, поэтому у наблюдателя возникает впечатление огоньков, сбегающих волной вниз по склону холма, «что-то наподобие водопада светлячков».

Она отправила письмо руководству национального парка в Элкмонте с просьбой не проводить реконструкцию парка и не разрушать естественную среду обитания насекомых по крайней мере до тех пор, пока ученые не изучат их поведение. Ведь это явление можно наблюдать лишь в строго определенном месте этого национального парка. Кстати, уникальность этого места натолкнула Линн Фост на мысль о том, что проживающие там люди, наверное, делают что-то такое, что способствует столь необычному мерцанию светлячков. Она предположила, что причиной может быть периодическое подстригание травяных газонов местными жителями. На протяжении 50 лет жители Элкмонта подстригают свои газоны примерно каждые две недели. Это позволяло личинкам светлячков благополучно перезимовать, зарывшись в заросли короткой травы на болотистой почве. Весной эти личинки превращались в светлячков, которые размножались летом. Следовательно, по мнению Линн Фост, если Элкмонт покинут все его нынешние жители, регулярно подстригающие свои газоны, светлячки могут быть утрачены для науки раз и навсегда. В поддержку своей гипотезы, касающейся стрижки травяных газонов, Линн Фост указывала, что самые высокие концентрации светлячков отмечались

непосредственно возле домиков местных жителей и охватывали участки, на которых регулярно подстригалась трава… Ни одной из личинок не удалось обнаружить на участке, где раньше стоял дом «дядюшки Лема Оуенбая», то есть там, где уже давно не подстригают траву. На протяжении 15 лет, за которые на месте лужайки, примыкавшей к дому Мейны Маккинн, успел вырасти лес, она отмечала существенное уменьшение «своей» популяции светлячков.

Линн также удручала перспектива расставания со своим жильем и привычным окружением. К тому времени семейство Фостов наслаждалось фантастическим мерцанием светлячков уже на протяжении 40 лет. Каждый июнь три поколения Фостов укутывались в пледы и молча сидели на неосвещенном крыльце своего домика в ожидании начала очередного представления.

То, что было так знакомо семейству Фостов, было новостью для науки[22]22
  Об истории открытия, совершенного Линн Фост, рассказывается в статье Carl Zimmer, “Fireflies in lockstep,” Discover 15 (June 1994), pp. 30–31, и в статье Susan Milius, “U.S. fireflies flashing in unison,” Science News 155 (March 13, 1999), pp. 168–170. Прекрасный материал в пересказе самих очевидцев опубликован в газете The Tennessee Conservationist: Lynn Faust, Andrew Moiseff, and Jonathan Copeland, “The night lights of Elkmont,” The Tennessee Conservationist (May/June 1998), pp. 12–15. Научный материал на эту тему можно найти в статье Andrew Moiseff and Jonathan Copeland, “Mechanisms of synchrony in the North American firefly Photinus carolinus (Coleoptera: Lampyridae),” Journal of Insect Behaviors (.1995), p. 395.


[Закрыть]
. Эти любительские наблюдения могли стать первым хорошо задокументированным случаем синхронного мерцания светлячков в Западном Гэмпшире. На протяжении многих десятилетий после дискуссии, разгоревшейся в начале XX века в журнале Science, было принято считать, что такое явление не встречается на американском континенте – только в Азии и Африке. Я познакомил Линн с Джонатаном Коуплендом, исследователем светлячков, работающим в Южном университете Джорджии. Коупленд вместе со своим коллегой Энди Моисеффом из Коннектикутского университета подтвердил, что светлячки, обитающие у домика Фостов, мерцают синхронно, причем величина рассинхронизации между светлячками не превышает трех сотых долей секунды.

Несмотря на то что в 1992 г. Элкмонт был в конечном счете поглощен национальным парком «Грейт-Смоки Маунтин», светлячкам удалось пережить эту трансформацию, и их «Световое шоу» продолжилось, став хорошей приманкой для туристов. Что касается Линн Фост, то ее по-прежнему увлекает повсеместность синхронизма в природе и она по-прежнему совершает свои открытия. Вот, например, о чем она написала мне в 1999 г.: «Еще одно явление простого синхронизма мне довелось наблюдать этой весной, когда четыре индюка (не диких, а домашних) во время весеннего брачного периода собираются в круг и начинают синхронно кулдыкать, после того как их вожак (во всяком случае, мне показалось, что он является их вожаком) издает первый звук».

Далеко не все из нас способны оценить по достоинству чудеса синхронизма в мире животных[23]23
  Dick Milne, “Govt. blows your tax $$ to study fireflies in Borneo: Not a bright idea!” National Enquirer (May 18, 1993), p. 23.


[Закрыть]
. Например, 18 мая 1993 г. в таблоиде National Enquirer была опубликована статья, озаглавленная «Правительство швыряет на ветер деньги налогоплательщиков, выделяя средства на изучение светлячков, обитающих на острове Борнео. Не самая блестящая идея!». Автор статьи издевательски высказывался по поводу предоставления Национальным научным фондом одного из грантов и сообщал, что член Палаты представителей Том Петри (член Республиканской партии от штата Висконсин) «не считает, что это исследование окажется таким уж полезным, и хочет “зарубить” его. “Тратить деньги налогоплательщиков на изучение светлячков кажется мне не самой лучшей идеей”».

Нет ничего удивительного в том, что Том Петри – как и большинство людей, далеких от науки – не понимает важность этой проблемы. Между тем важность изучения светлячков трудно переоценить. Например, до 1994 г. самопроизвольные пульсации трафика между устройствами, которые называются маршрутизаторами, доставляли немало проблем специалистам, работающим с интернетом[24]24
  Sally Floyd and Van Jacobson, “The synchronization of periodic routing messages,” IEEE-ACM Transactions on Networking 2 (1994), pp. 122–136.


[Закрыть]
. Лишь в 1994 г. стало понятно, что маршрутизаторы ведут себя подобно светлячкам, периодически обмениваясь сообщениями, которые непреднамеренно синхронизировали их. Как только причина была выявлена, стало ясно, как избавиться от этих «заторов» в компьютерной сети. Инженеры разработали децентрализованную архитектуру, обеспечивающую более эффективное тактирование компьютерных цепей: для достижения синхронизма с невысокими затратами и высокой надежностью они взяли на вооружение стратегию светлячков. (Эти скромные насекомые даже помогают спасти людям жизнь. По иронии судьбы, на той же неделе, когда в National Enquirer были опубликованы «разоблачения» Тома Петри, в статье, опубликованной журналом Time, сообщалось о том, что врачам удалось использовать светоизлучающий фермент светлячков – люциферазу – для ускорения испытаний лекарств от особо стойких разновидностей туберкулеза[25]25
  Анонимный автор, “Lighting the way. Tuberculosis sufferers are getting glowing help from the firefly,” Time (May 17, 1993), p. 25. Эта статья базируется на исследовании W. R. Jacobs et al., “Rapid assessment of drug susceptibilities of mycobacterium-tuberculosis by means of luciferase reporter phages,” Science 260 (1993), pp. 819–822.


[Закрыть]
.)

Групповое поведение светлячков не только служит источником вдохновения для инженеров, но имеет более широкое научное значение. Это один из немногих поддающихся трактовке примеров сложной самоорганизующейся системы, в которой одновременно происходят миллионы взаимодействий, когда каждый элемент системы изменяет состояния всех остальных ее элементов. Практически все основные нерешенные проблемы в современной науке имеют такой запутанный характер. Рассмотрим, к примеру, каскад биохимических реакций в отдельно взятой клетке и нарушение их хода, когда эта клетка оказывается раковой; взлеты и падения фондового рынка; формирование сознания в результате взаимодействия триллионов нейронов в мозге; зарождение жизни из сложнейшей сети химических реакций, протекавших в первичном бульоне. Все эти примеры включают огромные количества «действующих лиц», соединенных между собой в сложные сети. В каждом таком случае самопроизвольно возникают изумительные картины. Богатство окружающего нас мира во многом объясняется чудесами самоорганизации.

К сожалению, наш разум не в состоянии уяснить столь сложные системы. Мы привыкли мыслить о системах с точки зрения централизованного управления, четких цепочек команд, простой причинно-следственной логики. Но когда нам приходится иметь дело с системами, содержащими огромные количества взаимосвязанных элементов, когда каждый элемент в конечном счете влияет на все остальные части системы, наши стандартные способы мышления оказываются бессильны. Простые картины и словесные формулировки слишком близоруки. Именно это создает проблемы в экономике, когда мы пытаемся предугадать последствия какого-нибудь очередного урезания налогов или изменения процентных ставок, или в экологии, когда применение какого-нибудь нового пестицида приводит вовсе не к тем результатам, на которые мы рассчитывали (например в продукты питания попадают вредные вещества).

Загадка синхронного мерцания светлячков стоит в одном ряду со множеством концептуальных проблем, подобных ей, хотя, разумеется, найти ее решение гораздо легче, чем найти решение проблем экономики или экологии. Мы имеем достаточно полное представление о природе индивидуальных организмов (светлячков), их поведении (ритмичное мерцание) и их взаимодействии («перезапуск» в ответ на свечение), в отличие от наших весьма приблизительных представлений об экологических системах или глобальном рынке, которые характеризуются множеством разнообразных компаний и видов живых организмов и неизвестными нам режимами взаимодействия элементов этих сложных систем. Достичь понимания таких систем отнюдь не просто. В действительности все, о чем было сказано выше, является лишь незначительной частью того, что нам удалось понять к настоящему времени. Однако приведенной выше информации вполне достаточно для того, чтобы читатели уяснили, как математика помогает нам раскрывать тайны спонтанно возникающего порядка, и получили наглядный пример того, что может (и чего не может) сделать для нас математика на этой примитивной, самой начальной стадии исследования.



скачать книгу бесплатно

страницы: 1 2 3 4 5