скачать книгу бесплатно
см. Причём, сфера заряда энергии пульсирует, вращаясь по волноводу, с частотой около 10
Гц, при котором старый волновод обновляется новым и выталкивается во внешнее пространство, формируя внешнее поле электрона. Поэтому большее время около 10
секунды сфера источника переменного диаметра находится в состоянии вращения и излучения при формировании волновода электрона. Излучается магнитный вихревой поток зёрен-потенциалов, который покидает новый формирующийся замкнутый волновод. Его комптоновская длина волны составляет величину 2,4 х 10
см. Дебройлевская длина волны электрона в атоме (т.е. размер сферической области дискретного пространства, в которой электрон, будучи связан электрическим полем ядра, уже перестаёт существовать со свойствами свободного электрона) в нормальных условиях рекомбинационного теплового равновесия составляет величину 10
– 10
см, а в условиях вакуума космоса в областях с температурой близкой к абсолютному нулю приближается к 10
– 10
см. Таким образом, высоко возбуждённые состояния атомов, имеющие на поверхности Земли очень короткое время жизни, в глубинах космоса практически стабильны. У электрона (позитрона) самая минимально возможная масса-энергия и электрический заряд инертного покоя (511 Кэв и 1,6 х 10
К) в системе СИ обусловлена разрядом пульсаций гравиэлектромагнитного монополя (ГЭММ) в триаду монополей с последовательным излучением квантов потока электрических, гравитационных и магнитных зёрен-потенциалов в его замкнутой и одноконтурной структуры волноводов (фото 4).
В отличие от структуры электромагнитных зёрен свободного магнитного монополя микровихрона фотона, в электроне гравитационный монополь образуется из квантового перехода ГЭММ, а структура его зерен становится электрогравитационной. Эффективный размер фазового объёма спиральных волноводов пульсирующего поля свободного электрона в состоянии покоя составляет величину 1,2 х 10
см и в зависимости от скорости движения и состояний связности в атоме может иметь такой размер гораздо меньше указанного вплоть до 0,6 х 10
см, а при скоростях на ускорителях почти равной скорости света в 200 раз меньше, т.е. превращается в мюон. Размер же источника электрона ГЭММ в свернутом состоянии сферы может достигать размеров 10
см, а для ядерных частиц с полуцелым спином со структурой ГЭММ, составляющих оболочки атомных ядер типа нейтральных мезонов, на три-пять десятичных порядков меньше указанного. Частота колебаний ГЭММ свободного электрона из свёрнутого состояния сферы-осциллятора в состояние развёрнутого состояния четверти длины волны (фото 4—4а) составляет величину около 1,2 х 10
Гц.
Таким образом в реальном представлении за основу элементарных частиц с полуцелым спином принята концепция Луи де Бройля – частица может существовать последовательно в корпускулярном (сфера) и в форме волны (четверть волновода).
Фото 4а. Излучение гравитационного (красный) и электрического (синий) внешних полей электрона
В отличие от структуры электромагнитных зёрен свободного магнитного монополя фотона, в электроне гравитационный монополь образуется из квантового перехода путем последовательной замены магнитных оболочек зёрен на гравитационные. В результате магнитный монополь превращается в гравитационный, а структура зерен становится электрогравитационной.
Энергия магнитного монополя расходуется на создание и обновление с частотой около 10
Гц его одноконтурного и пульсирующего замкнутого волновода из зёрен-электро и гравпотенциалов, который и формирует внешнее поле электрона, представленное на фото 4а. Вращаясь с такой частотой, магнитный монополь (гравитационный монополь) электрона воспроизводит новый волновод, отталкивая старый во внешнее пространство и формируя внешнее поле и аномально большой магнитный момент.
Объём этого поля-пространства, как и длина космического трека фотона из-за горизонта, соизмерима с объёмом нашей всей Вселенной. Его стабильное по возрасту жизни микропространство имеет отрицательный (позитрон – положительный) заряд 1,6 х 10
Кл в системе СИ, хотя реально в природе не существует таких зарядов, как не существует заряда массы, силы и времени. и т. д. А существует вихревой электрический монополь – заряд электрическим потенциалом (источник) и вихревой гравитационный монополь – заряд гравитационным потенциалом (источник), которые рождают внешние вихревые поля – неравномерно по спиралям размещённые на его одноконтурном волноводе. Указанные на фото 4а кластеры внешнего поля электрона, излучаются последовательно в разные моменты времени. Форма пульсирующего одноконтурного замкнутого волновода из электропотенциалов и гравпотенцилов определяет каноническую форму для всех лептонов – полуцелый спин.
Все эти данные и легли в основу о механизме рождения спина у электрона под действием магнитного монополя, т.е. вращения при разрядке гравитационного монополя.
Изменения движения и структуры электрона при увеличении энергии на ускорителях и коллайдерах.
Вплоть до настоящего времени расчёт увеличения энергии электронов за счёт их разгона в электрическом поле идёт по формулам СТО А. Эйнштейна, т.е. релятивистский эффект зависимости массы частицы от скорости. Это грубая ошибка вызвана тем, что в природе нет никакой массы – ни массы покоя, ни релятивисткой массы в СТО. А физические процессы увеличения массы даются лишь на веру математическими формулами Лоренца, не имея под собой никакого физического обоснования, в том числе определения массы, как физической категории. Таким образом, нарушается основной классический принцип познания законов природы на основе экспериментов, а не из математики по Геделю. Реально увеличение скорости движения электрически заряженной частицы с её собственным полем во внешнем поле другого источника с полем противоположного поля идёт поэтапно и очень сложным образом:
– вначале электрон ускоряется силой притяжения поля другого источника с противоположным знаком путём аннигиляции поля в образовавшихся зонах холодной безмассовой плазмы (силовые линии поля) до предела световой скорости (v- 0,98—0,99с, при Е- 2—4 Мэв),
– такой процесс происходит плавно вплоть до первого квантового перехода в мюон, у которого уже собственное гравитационное поле в 207 раз больше, чем у электрона, появляется нестабильность структуры с периодом полураспада в 2,2 х 10
секунды,
– затем подобные процессы повторяются и с мюоном, вплоть до рождения заряженных и ускоряющихся высокоэнергетических мезонов,
– так порождаются нестабильные заряженные частицы с собственным полем и полуцелым спином, которые вместе со своими продуктами распада и регистрируются в детекторах,
– в точках столкновения с мишенью или продуктами встречного пучка противоположного знака заряда в коллайдерах происходят взаимодействия четверть-волноводов собственного излучения с образованием зон холодной безмассовой плазмы, в которой и порождаются нейтроны, протоны-антипротоны) путем осевой имплозии, переходящей сгустками в центральную имплозию, где и происходит упорядоченная конденсация разных магнитных монополей в соответствующие оболочки, образуя центральную структуру.
Итак, полная энергия складывается из энергии движения, переданной частице ускоряемым внешним переменным электрическим полем и внутренней энергии при квантовом переходе в мюон (мезоны), а расчёт и изменение внутренней энергии заряженной одноконтурной частицы идёт по формуле Планка, т.е. произведением его фундаментальной константы на частоту излучения четверть-волноводов магнитным монополем ГЭММ. Ускоряясь в электрическом поле, электрон поэтапно превращается в мюон (фиг.), заряженный ?-мезон, ?-мезон и т.д., а при встречных соударениях с аналогичными продуктами ускоренных позитронов путём осевой имплозии, переходящей сгустками в центральную имплозию, и рождаются нейтроны, протоны-антипротоны.
С ростом энергии электрона происходят процессы обратные переходу возбуждённого атома в основное, т.е. укорачивается длина четверть волновода, увеличивается частота пульсаций магнитного монополя в ГЭММ.
При регистрации продуктов столкновения следует учитывать период полураспада мюонов, мезонов, которые в свою очередь смазывают картину в детекторах, регистрацией их продуктов распада – электронов, фотонов и многих других.
Внешнее проявление свойств формы и размера волноводов-полей электрона с вращающимся полярным магнитным монополем зависит от скорости его движения и состояния степени свободы (связан в атоме или полностью свободен) – это его спин, электрический заряд, геометрическая структура с определёнными размерами (длина волны) и индуктируемая масса (в терминах системы СИ или СГС), а также бесконечно долгое время (вечное) жизни, определяемое запасом его внутренней энергии в форме магнитного монополя. Для сравнения заметим, что запаса внутренней энергии магнитного монополя, рождённого при снятии возбуждения атома, достаточно, чтобы фотон мог пролететь всю глубину нашей Вселенной из-за невидимого горизонта, т.е. 10
см, за 14 миллиардов лет. Внутренние свойства электрона, ответственные за эти внешние проявления, обусловлены процессами, происходящими в резонансном замкнутом микровихроне, в котором поляризованный магнитный монополь периодически и всегда движется-вкручивается (имплозия осевая) в одном направлении в сторону к центру поверхности полусферы (узел), где исчезая, заряжает гравитационный монополь. Последний источник, разряжаясь индуктирует электрический монополь и два внешних контура волновода электрона. Одно – переменное электрическое поле-волновода (внешняя спираль), которое рождает уже электрический монополь, как источник, что и регенерирует магнитный монополь – индуктирует и периодически заряжает магнитный монополь на удалении от четверти длины волны (пучность) в узел. Другое – волновод вихревого гравитационного поля – внутренняя спираль разрядки гравитационного монополя, показанная на фото 4а. Так образуется замкнутый канонический одноконтурный фазовый объём с полуцелым спином элементарной частицы электрон с массой, т.е. элементарная частица со структурой активированного гравиэлектромагнитногомонополя. Указанные вращательно-поступательные движения магнитного и гравитационного зарядов и определяют направление вектора спина, спиновый магнитный момент и собственный механический момент электрона, а их магнитомеханическое отношение есть величина постоянная для стабильных микрочастиц – это основной закон природы. Как только поверхностный контур электрона замкнулся, его оба внутренних заряда стали пульсировать, проявляя направление спина и обновляя-переизлучая контуры, создавая внешние мгновенные вихревые поля частицы – электрическое, гравитационное и магнитное.
В отличие от фотона электрон имеет заряд электрическим потенциалом дополнительно и в третьей форме, излучаемых свободно внешних электрических полей, которые при большой концентрации электронов могут создавать облако шарового круглого и газо и светоподобного электричества. Такое облако после соответствующего захвата и компрессии способно рождать холодное электричество, которым играл Н. Тесла, перекладывая его из коробки или заливая его в бутылку.
Таким образом, обновлённый контур из зёрен-потенциалов направленно последовательно выталкивает-излучает предыдущий и формирует внешние поля электрона. Существенно, что эти поля в кластерах атомно-молекулярного вещества можно поляризовать мощным импульсным внешним полем и зафиксировать их направленность в решётке твёрдого тела, например их спины – это производство вечных постоянных магнитов.
Та энергия магнитного монополя, которая в фотоне идет на рождение трека из зёрен-электропотенциалов длиной более 10
см, в электроне идет на поддержание и обновление внешних полей, т.е. уже объёма с радиусом, равным длине указанного трека фотона. Ответ на вопрос – как долго может длится этот процесс? Гораздо больше, чем время которое тратит фотон, прилетая к нам из-за горизонта, т.е. более четырнадцати миллиардов лет или 4,2 х 10
лет. А какие потери энергии его заряда движения? Экспериментально установлено, что за время (14 миллиардов лет) движения фотона очень длинного пути из самых окраин Вселенной он «краснеет» всего лишь до z – 7 или 8.
Другими словами, бесструктурной точечной пассивной массы электрон не имеет, а имеет внутренний направленный волновод определённых размеров из зёрен-гравпотенциалов, который и создаёт суммарный заряд гравитационным потенциалом – заряд массы. При обновлении волновода предыдущий излучается, создавая внешнее гравитационное поле, которое взаимодействует с центральным гравитационным полем Земли. Поэтому он инертен и имитирует собственный заряд массы. Точно также внешний направленный волновод из зёрен-электропотенциалов формирует суммарный заряд отрицательного электрического потенциала и направление спина электрона, а также и его внешнее электростатическое поле. При этом следует заметить, что динамизм излучения внешних полей электрона последовательно вихревой разных по значению зёрен-потенциалов – ближе к узлу находятся большие значения и выталкиваются с большей скоростью, а в пучности уменьшаются до нуля. Поэтому они разные и по дальнодействию, и по разному проявляют свои свойства относительно кластерообразования газоподобного электрическогоэфира, изучением которых и занимался Тесла.
После того, как в поле атомного ядра (фото 4), магнитный монополь фотона поделился пополам (чёрный конус), он до полной остановки во время торможения электрическим монополем микровихрона превратился-зарядился в свой аналог, т.е. в источник заряда энергии покоя в замкнутом объёме – гравитационный монополь (зелёный шарик в центре на поверхности волновода), как процесс противодействия изменению скорости света. Поэтому его структура по объёму аналогична структуре магнитного монополя. Однако некоторые его свойства отличаются от свойств магнитного. В отличие от разрядки свободного магнитного монополя, он производит при разрядке волновод из зёрен-гравпотенциалов, а на удалении в четверть длины волны воспроизводит изменение отрицательного электрического вихревого поля соответствующими зёрнами-электропотенциалами, которые регенерируют (спин полуцелый) тот же по знаку магнитный монополь. Этот процесс противоположен процессу, который происходит с магнитным монополем фотона (спин целый). Другими словами, в свободном вихроне фотона зарядка вторичного магнитного монополя происходит через посредство электрического монополя и находится в функции противодействия предыдущему первичного магнитного монополя. В замкнутом вихроне электрона при разрядке гравитационного монополя на удалении в четверть длины волны индуктируется электрический монополь (источник), который создаёт переменное электрическое поле и уже это переменное поле регенерирует магнитный монополь. А функция регенерации того же по знаку магнитного монополя возлагается на вращающийся заряд гравитационным потенциалом в полном соответствии с основным законом природы. Это и есть гравиэлектромагнитный монополь.
Разрядка гравитационного монополя – это вращательное движение по внутренней красной спирали, т.е. движение спирального зелёного тора с увеличивающимся диаметром. Во время этого движения происходит возбуждение электрического монополя, его внешнего волновода и развёртка-установка зёрен-гравпотенциалов на внутреннем волноводе от большего до меньшего значения величины до замыкания внешней поверхности контура электрона. Затем этот контур обновляется новым периодом обновления, а предыдущий последовательно выталкивается наружу и создаёт внешние поля электрона. Высокая частота таких повторяющихся процессов формирует во внешнем пространстве электрическое, гравитационное поле и магнитный момент, как от стационарного источника (но реально таких бесструктурных источников не существует), т.е. индуктируют массу, электрический заряд, спин и магнитный момент электрона в системе СИ.
Спин микрочастицы – это параметр, который характеризует степень (полную или неполную) завершённости квантового перехода вращательной материи при перезарядке носителя индуктированного заряда энергии с одного знака на другой. Этот параметр в целом определяет форму, тип и состояние движения микрочастицы, т.е. образуется открытый самодвижущийся (фотон) или замкнуто-колебательный (электрон) её фазовый объём. Эти признаки и определяют вид движения частицы – кинетический или безынерционный волновой самодвижущийся. Это определение является прямым следствием закона сохранения энергии. В данном случае заряд энергии электрона (магнитный монополь) не меняет знак при квантовом переходе, поэтому оно неполное, а спин полуцелый.
Структура значений потенциалов сферы гравитационного монополя, аналогична магнитному – большей сфере спиральных волноводов из зёрен соответствуют меньшие значения по абсолютной величине, а меньшей – наибольшие значения потенциалов. Поэтому, когда гравитационный монополь разрядился, его наибольшая сфера в этот момент находится в точке волновода с максимальной пучностью, откуда начинал свою зарядку и движение вновь индуктированный с тем же знаком магнитный монополь сферой большего радиуса, а в данный момент заканчивает свою зарядку сферой меньшего диаметра в центре суммарной сферы.
Фотоядерныереакции лёгкими фотонами. Аналогично с уже рассмотренным процессом фотоатомных реакций с испусканием микрочастиц, происходит процесс Гигантскогорезонанса при пороговых энергиях фотонов от 10 до 25 Мэв, когда длина волны становится сравнимой с диаметром ядра, что приводит также к излучению различных микрочастиц.
Фотоядерныереакциирезонансно-«тяжёлыми» фотонами. Рассмотренные выше фотоны, полученные при излучении возбуждённых атомов или ядер, назовём «лёгкими» фотонами, только таким фотонам свойственно определение их энергии через произведение частоты и постоянной Планка. К их числу следует отнести и лазерное излучение даже высоких плотностей потока луча. Однако в природе Вселенной встречаются такие процессы, например, электрические разряды атмосферных молний, при которых синфазно за очень короткий промежуток времени порядка микросекунды и в очень малом локализованном объёме импульсно-переменном электрическом поле больших токов и напряжений рождаются путём слияния магнитные заряды с максимально возможной плотностью упаковки зёрен-потенциалов как на самих спиралях, формирующих сферу этого заряда, так и названных спиралей, вплотную примыкающих друг к другу. Назовём такие электромагнитные фотоны «тяжёлыми» (фото 5), а источники производства таких фотонов, т.е. «тяжёлых» магнитных зарядов, выделим в отдельный класс. Резонансно-«тяжёлый» монополь вихрона СВЧ или ИК диапазона ЭМВ (в его фазовом объёме находится очень большое количество атомов), проходя через кластер вещества, также производит волноводы и способен ионизировать не только электроны внешних и внутренних оболочек атома, но может ионизировать частицы внешних оболочек атомных ядер. Как следствие этих процессов, вдоль потенциалов волноводов идут вихревые токи, а первичный химический состав вещества изменяется.
Фото 5. Лёгкие атомные и «тяжёлые» СВЧ – фотоны.
Рассмотренный процесс касается формирования лишь одного атомного микровихрона фотона. При взаимодействии атомов с резонансными и резонансно-«тяжёлыми» СВЧ или ИК фотонами возможно их частичное поглощение с возбуждением механических колебательно-вращательных уровней (увеличение температуры атомов), ионизация частиц внешних оболочек атомов и атомных ядер с выделением соответствующей ядерной энергии. Частоты таких фотонов находятся в известном ИК-диапазоне. Энергия же «тяжёлых» фотонов определяется уже величиной магнитных зарядов, а не произведением частоты на постоянную Планка.
Длиноволновый гигантский солнечный макровихрон специфически взаимодействует с плазмой Солнца – в момент его выхода через поверхность фотосферы его электромонополь захватывает кластер фотосферы, который через мгновение будет выброшен исчезающим электромонополем из его фазового объёма, и образует в фотосфере пару брешь – «чёрное пятно» и белое пятно над ним. Такие заряды замечены (фото 6) на поверхности Солнца – назовём их «сверхтяжёлыми» длиноволновыми фотонами.
Фото 6. Кластер фотосферы, захваченный гигантским гипермонополем и пары «чёрных и белых» пятен (справа).
LENR[21 - LENR-ХЯС-СВАУШК – основной процесс производства тяжёлыхи сверхтяжёлых атомных ядер на звёздах и планетах.]. Именно такой метод позволяет при относительно небольшой частоте фотонов (ВЧ, СВЧ, КВЧ и ИК диапазон), но очень высокой плотности зёрен-потенциалов на волноводах, с помощью их излучения специальными магнетронами[22 - В природе такие фотоны порождаются молниями, а также самовращающимися ядрами ЧСТ звёзд и планет.] инициировать эффекты СВЧ бытовой микроволновой печи – вихревые токи, а также уже широко известные низкоэнергетические ядерные реакции (LENR) с производством дополнительной энергии (тепловой или электрической) и новых атомных ядер. Это происходит за счет фотоионизации частиц, входящих в состав внешних ядерных оболочек тяжёлых элементов. При этом, необходимо отметить аналогию поведения взаимодействия лёгких фотонов с внешними электронами в атоме с «тяжёлыми» фотонами, которые таким же образом ионизируют частицы с внешних оболочек атомных ядер.
Мезоны – это промежуточные состояния распадающихся оболочек, образующих внутренние и внешние оболочки атомных ядер. Основной источник этих мезонов верхние слои атмосферы, с ядрами атомов газа которой сталкиваются космические и солнечные протоны. Процесс производства мезонов – это ионизация оболочек атомных ядер, т.е. ядерных оболочек, мгновенно распадающихся в более долго живущие подобные частицы с тем же спином, т.е. в мезоны. Время, которое затрачивается на переход таких микрочастиц к мезонам от момента взаимодействия до их рождения, является сугубо ядерным и оценивается порядком 10
секунды. За такое время зарегистрировать истинную частицу, её структуру и другие параметры совершенно невозможно.
Фоторождение мезонов[23 - А. С. Игнатов, А. Н. Мушкаренков, В. Г. Недорезов*, 2009 год, ФОТОРОЖДЕНИЕ п-МЕЗОНОВ НА ПРОТОНАХ, НЕЙТРОНАХ И ЛЕГКИХ ЯДРАХ В ОБЛАСТИ НУКЛОННЫХ РЕЗОНАНСОВ. Институт ядерных исследований РАН, Москва. Поступила в редакцию 25.12.2008 г.].
Экспериментально установлено – фоторождение [203] ?-мезонов на ядрах производится с помощью гамма – излучения с энергией до 1500 Мэв, полученное при обратном комптоновском рассеянии фотонов с энергией 2—2,5 кэв на электронных пучках накопителей с энергией до 6000 Мэв, так как время жизни свободных пи-мезонов достаточно велико и средняя длина их свободного пробега сравнима с радиусом легкого ядра.
Таблица мезонов
Мезоны участвуют во всех известных типах взаимодействий. Поэтому их структурный состав в основном представлен частицами в состоянии с целочисленным спином. На фото 7 приведены схемы мгновенных структур фазовых замкнутых объёмов мезонов. В динамике движения магнитных монополей, образующих мезоны в свободном пространстве, возможно самое широкое многообразие таких форм, зависимых от полей окружения.
Фото 7. Схемы ? – мезонов и структуры их волноводов.
На фото 7 приведены ??-мезоны, т.е. нейтральные (первая и вторая позиции слева, сверху), причём на второй позиции указаны внутри волноводы из гравитационных зёрен-потенциалов, а также пи-плюс и пи-минус мезоны (позиции справа и внизу). Они все нестабильны и имеют спин равный нулю.
Нейтральные мезоны – это промежуточное состояние замкнутых распадающихся внутренних оболочек ядер, образованные парами переходных ядерных и противоположных магнитных монополей, которые уже неспособны создавать даже нестабильные частицы с полуцелым спином. Эти монополи аналогичны тем, которые создают частицы со спином ? – электроны, позитроны и мюоны, но стабильно существовать могут только в составе ядерных оболочек. Однако их частоты и соответствующие размеры существенно выше и меньше названных. Пары из таких частиц, как и куперовские пары и пары электрон-позитронов, в свободном состоянии способны лишь образовывать нестабильные частицы с нулевым спином и суммарным зарядом гравитационного потенциала – массой покоя мезонов. Это и есть микрочастицы со структурой гравиэлектромагнитных диполей.
Заряженные мезоны – это остатки распадающихся внешних оболочек ядер, которые образованы парами с одинаковым зарядом соответствующих магнитных монополей, образующих структуру частицы с нулевым спином (фото 7, справа).
Внешние поля этих мезонов формируются также как и у электронов и мюонов. Масса-энергия этих мезонов в системе СИ равна соответственно 139,56 и 139,567 Мэв, соответственно, а размер фазового объёма (геометрической пространственной структуры внешних контуров) немного меньше размера мюонов и во много раз меньше соответствующего размера электронов.
Нейтральный (?-ноль) мезон имеет массу 134,96 Мэв и распадается за время 0,83 х 10
с, превращаясь в два гамма кванта (фото 8) – акт аннигиляции пары.
Фото 8. Распады мезонов, слева нейтрального, справа заряженных.
Заряженные мезоны распадаются за время 2,6 х 10
с, превращаясь в одноименно заряженные мюоны и соответствующие нейтрино.
Непрерывное изменение параметров вещественной материи этих частиц происходит через соответствующие законы сохранения (сохранение средней энергии) при самоиндукции зарядов энергии из формы покоя (гравитационный) в форму замкнутого движения (магнитный) с построением волновода геометрической структуры (электрический). При этом имеется две возможности построения волноводов геометрической структуры частиц. Первая – разряд магнитного монополя с перезарядкой знака через посредство электрического монополя и последующим квантовым переходом в гравитационный монополь, который опять при разрядке регенерирует первичный магнитный, т.е. образуется замкнутый волновод ?-ноль мезона, как основа внутренних ядерных оболочек. Вторая – образование волновода заряженных мезонов из двух одинаковых по знаку магнитных монополей, объединённых в пары с противоположно направленными спинами по аналогии куперовских пар электронов, как основа внешних оболочек ядер. Этот процесс аналогичен для всех замкнутых вихронов и определяется только параметрами магнитного монополя – частота колебаний, значение заряда, степень поляризации, время зарядки.
У каждого типа частиц по САП есть античастица[24 - В реальном представлении у каждой микрочастицы должна существовать частица с противоположным зарядом электрическим потенциалом.]. Обычно это отдельная частица, но бывает и так, что античастица и частица – это одно и то же. Только частицы, удовлетворяющие определённым условиям (к примеру, электрически нейтральные) могут быть античастицами сами себе. Фотон, как и нейтрон, является одновременно и античастицей по отношению к себе. У некоторых других частиц есть отдельные античастицы, обладающие той же массой, но противоположным электрическим зарядом. Нейтральные мезоны – примеры электрически нейтральной частицы, являющейся античастицей самой себе.
Следует особо отметить, что рождение пар мюонов, позитронов и электронов одним гамма-квантом в поле атомного ядра и противоположные им реакция распада-деления ?-ноль мезона на два кванта, а также аннигиляции-дезинтегрции этих пар, однозначно определяют величины пороговых энергий материнских квантов.
Механизм индукции массы и спина.
У ?-мезонов, в отличие от электронов и мюонов, гравитационный монополь и его внешнее поле, как заряд массы в СИ, суммируется из двух независимых, но электрически связанных волноводов гравпотенциалов двух замкнутых оболочек – двухконтурный с активированной структурой гравиэлектромагнитного диполя. Спины источников движения складываясь по знаку определяют целочисленный спин мезона. Периодически обновляемый волновод из гравпотенциалов, также как и волновод из электропотенциалов, во внешнем поле формирует гравитационное поле с отрицательной массой, противоположной по знаку центральному гравитационному полю Земли. Масса частиц – это продукт взаимодействия собственного гравитационного поля частицы с противоположным по знаку гравитационным полем Земли. Энергию для обеспечения других параметров, частица использует от вечного магнитного монополя.
К-ноль и К-плюс мезоны (или каоны) также нестабильны, имеют спин равный нулю. Масса этих мезонов равна в системе СИ соответственно 497,67 Мэв и 493,667 Мэв. Структура фазового пространства аналогична ?-ноль и ?-плюс мезонам, только частота вихронов в них в несколько раз больше, а размер в соответствующее число раз меньше.
В настоящее время большое внимание привлекают на себя осцилляции друг в друга античастиц. Осцилляции элементарных частиц – это периодический процесс превращения частиц определённой совокупности друг в друга. Первый и наиболее хорошо изученный пример осцилляций обнаружен в системе нейтральных К-мезонов. Теоретическое предсказание и обсуждение экспериментальных следствий осцилляций были даны А. Пайсом (A. Pais) и О. Пиччони (О. Piccioni) в 1955 (эффект Пайса – Пиччони, обнаруженный и исследованный в 1957 – 61).
По данному представлению структуры фазового объёма К-ноль мезона, его загадочность превращений, как и все явления слабых взаимодействий обусловлены делением или слиянием в вихронах магнитных монополей при определённых условиях окружающих полей. А внешнее проявление этих внутренних трансформаций вихронов соответствует распаду элементарных частиц, делению или слиянию ядер. Поэтому при распаде К-ноль мезона, состоящего из двух противоположных частиц, возможны моды распада не только на два и три ?-ноль мезона, но и на большее количество других каналов: мезонно-мюонный, мезонно-электронный и т. д.
По физической природе, названные мезоны являются лишь разрешенными нестабильными фазовыми состояниями замкнутых волноводов, которые еще способны формировать изменяющиеся вихроны, но которые уже не способны создать стабильные фазовые микропространства электромагнитных потенциалов после ядерного взаимодействия протона с каким-либо ядром атома газового вещества атмосферы. Другими словами – это квантовые промежуточные состояния после взаимодействий магнитных монополей с окружающими полями.
Холодный ядерный распад-синтез[25 - http://www.youtube.com/watch?v=fWtVxXjQaKI (http://www.youtube.com/watch?v=fWtVxXjQaKI). ХЯС, часть 3. Свойства тяжёлых магнитных зарядов.] происходит через посредство ионизации зоной холодной плазмы заряженных частиц типа мюонов с внешних оболочек ядер, закреплённых в узлах кристаллической решётки твёрдого тела, по аналогии ионизации электронов с внешних оболочек атома. Такие фотоядерные и фононно-ядерные реакции происходят под воздействием «тяжёлых» СВЧ вихронов, способных создавать «вилки» поглощения с рождением гиперзвука (длина волны 10—100 микрон, частоты от 3 х 10
до 3 х 10
Ггц высокой плотности зарядки волноводов, «тяжёлые» магнитные и гравитационные монополи) на атомные и ядерные внешние оболочки с рождением свободных электронов и резонансных заряженных ядерных частиц со спином ?. Эти процессы происходят, как с помощью свободных, так и замкнутых макровихронов в зависимости от значений магнитного и гравитационного монополя, его частоты и плотности заселения зёрен-потенциалов на спиралях волноводов, т.е. «тяжести» фотона или фонона. Если вихрон свободный, а его магнитный монополь достаточно «тяжёлый», то ионизация электронов и возбуждение ядерных частиц (назовём их условно «мюонами») производится как при разрядке, так и при зарядке. Об этом свидетельствуют результаты М. И. Солина в его реакторе по исследованиям химических элементов на волноводах в затвердевшем цирконии. Если в решётке твёрдого тела имеются неоднородности с образованием соразмерных объёмных электрических зарядов, то некоторые вихроны своим соответствующим электромонополем захватываются этим объёмом, магнитный монополь делится на два и образуется пара связанно-замкнутых вихронов со спином ?, но взаимодействующих друг с другом (микрошар шаровой молнии, шаровый разряд), образуя одно целое. В фазовом объёме этих связанных друг с другом вихронов магнитные монополи регенерируются гравитационными, рождающие источники гиперзвука. Магнитные монополи при зарядке и гравитационные монополи при разрядке создают замкнутые волноводы, при этом путём кумулятивной имплозии волноводов переносят вглубь ядер атомов вещества кластеры зерен-электропотенциалов и гравпотенциалов, способных создать зону холодной плазмы, изменить электрическое поле и ионизировать частицы с оболочек ядра. Таким образом они «перемалывают» весь свой переменный фазовый объём вещества вдоль волноводов увеличивающегося диаметра, порождая электроны и «мюоны», которые, в свою очередь, создают новый состав ядерно-мезонной плазмы и вихревые токи электронов, изменяют первичный химический состав вещества посредством преобразования первичных атомных ядер, переводя их в другие нейтрально или отрицательно заряженные ядра. В последующих процессах релаксации за ядерное время происходят распад нейтральных и ионные ядерные реакции с положительно заряженными ядрами, что и приводит к трансмутации первичного вещества. Магнитный монополь расходует на это свой запас энергии и постепенно увеличивается в размерах до тех пор пока полностью не исчезнет. За это время он более миллиона раз переходит в гравитационный монополь, который через посредство волноводов гиперзвука и соответствующих вихревых токов вдоль них разносит энергию магнитного монополя по всему объёму кластера вещества – эффект аналогичный подогреву еды в микроволновой бытовой печке. Процесс изменения химического состава вещества имеет несколько каналов. Один из каналов прямой – ионизация внешней оболочки ядра с соответствующим уменьшением его заряда и массы. Второй резонансный захват освободившейся ядерной частицы с этой оболочки соседним ядром атома с соответственным увеличением его заряда и массы. Третий при воздействии «странного» излучения рождает отрицательно заряженные атомные ядра, приводящим к последующим ядерно-ионным реакциям. В последнем случае создаются ядра сверхтяжёлых атомов. В этих процессах выделяется большое количество дополнительной свободной энергии за счёт изменения внутренней энергии кластера вещества, заполняющего весь его объём. Время, за которое происходят эти процессы характерно для атомных и ядерных реакций и составляет от 10
для атомных до 10
секунды для ядерных преобразований. Эти процессы подтверждают взрывы электрода-проволочки в реакторе С. В. Адаменко с рождением самородков железа в кристаллической решётке меди (анода), окружённого в разрыве анода тонким слоем образовавшегося цинка, а также с образованием других сверхтяжёлых элементов, соответствующих спектру распространённости химических элементов в нашей Галактике (фото 1). Чем больше по значению энергии магнитный монополь, т.е. чем больше его частота, тем более глубокие ядерные оболочки доступны для ионизации, т.е. оболочки со структурой подобной от ?-мезонов, K-, D-, F- до B-мезонов. Ионизированные нейтральные «мезоны» с этих оболочек поглощаются на соседних ядрах (простейшие ядерно-ионные реакции), увеличивая их атомный вес и изменяя изотопный состав ядер, а заряженные «мюоны-мезоны» с внешних оболочек резонансно прилипают-оседают на внешние оболочки ближайших в окружении первичных ядер – ядра меди становятся ядрами цинка. Соответственно, остов от ядер меди, с которых были ионизированы эти «мюоны-мезоны», превращаются в ядра железа. При этом, чем тяжелее первичное ядро конвертера, тем больше его внешний размер – тем эффективней идут фотоядерные реакции ионизации частиц с внешних оболочек и требуется меньшая пороговая энергия их «поджигания». В результате этого процесса во внешней цепи генерируются дополнительные электрические токи, выделяется термическое тепло и изменяется ядерный состав первичного конвертера без внешней радиации, т.е. продукты находятся в стабильном состоянии. Если ячейка, в которой происходит этот процесс, находится в твёрдом агрегатном состоянии, то очень быстро наступает изменение её химического состава и разрушение. Как, следствие, процесс прекращается. Чтобы «приручить» выделяемую энергию, можно использовать в такой ячейке жидкий подвижно-проточный конвертер, тогда сразу будут решаться несколько задач:
– непрерывность процесса,
– отвод тепла,
– захват и отвод электрического тока электронов, наведенного как во вторичной обмотке трансформатора (индуктивный метод), так и во внешней цепи,
– отвод продуктов наработки новых ядер с возможностью фильтрации, селекции и кольцевания этого контура,
– переработка жидких радиоактивных отходов с АЭС.
ХЯС – LENR – СВАУШК резко отличается от мюонного катализа тем, что нет необходимости в энергозатратах на производство потока «мюонов», а ядерные продукты практически сразу образуются в стабильном состоянии, ионизованные частицы с ядерных оболочек конвертеров становятся строительным материалом для надстройки соседних внешних оболочек стабильных новых ядер. Освободившиеся электроны способны захватываться специальными схемами во внешних цепях, преобразовываются в дополнительный ток и выводятся в полезную нагрузку. Движущийся заряженный электрически поток жидкого конвертера в целом ещё создаёт и ток индукции, как первичный ток в обмотке трансформатора. Остаётся только снимать ток во вторичной его обмотке для внешнего питания бытовых приборов.
1.2. Аннигиляция нуклонов
Аннигиляция корпускулярных частиц структурированной материи – это обратный процесс рождения нейтронов. По этому процессу можно судить о пути, пороговой энергии фотонов и условиях рождения нейтронов и других типа альфа-частиц.
Нейтрон, протон, дейтрон и «античастицы»
Нейтрон прародитель самого распространенного во Вселенной химического элемента – водорода. Такие свойства объема, который занимает нейтрон, как спин, масса, инертность, плотность, магнитный момент, электрический дипольный момент, распределение плотности электрического заряда и магнитного момента, время жизни и другие – отрицают его как материальную бесструктурную частицу и определяют его как некое сложно-составное вихревое электромагнитное микропространство.
Ф. Вилчек в своей книге[26 - Вильчек Ф. Тонкая физика. Масса, эфир и объединение всемирных сил. – СПб.: Питер, 2018. – 336 с.: ил. – (Серия «New Science»). ISBN 978-5-496-02934-6], развивая, дополняя и по новому интерпретируя (первый, второй закон Эйнштейна и т.д) идеи ЧТО и ОТО, а также утверждая КХД (принципы её становления одинаковы с принципами КЭД, с той лишь разницей, что в КЭД один электрический заряд, а в КХД их три и те цветные), приходит к выводу – (в пункте 3 позиций из чего устроен мир) – основной компонент реальности оживлен квантовыми процессами.
В данной книге по аналогии – основной компонент реальности оживлён магнитными монополями.
Основной вопрос современности – где расположен и что является главным источником производства нейтронов? Ответ: основными источниками производства нейтронов являются ядра пульсаров-нейтронные звёзды и все ядра светящихся звёзд, а также геологически активных планет типа Земли. Другими источниками, которые порождают такие микропростраства, являются возбужденные (тем или иным методом) более крупные или тяжелые ядра атомов химических элементов.
Возраст жизни нейтронов зависит от силы и формы полей в объемах, где они присутствуют. В обычных условиях на поверхности Земли нейтрон распадается (фиг.2.10), превращаясь в протон. Кроме протона при распаде появляются электрон и антинейтрино. Кинетическим корпускулярным осколком этой ядерной реакции, уносящим часть энергии, является антинейтрино. В процессе термализации, т.е. охлаждении этих частиц до состояния при, котором происходит их рекомбинация, образуется атом водорода. Период полураспада (10—20 минут) зависит от некоторых внешних условий. Присутствие небольшой примеси протонов и электронов существенно увеличивает их возраст, так как электрические поля этих частиц блокируют процесс разрыхления вихронов внешних оболочек нейтронов, тем самым замедляют их распад. На поверхности ЧСТ, ядра нейтронной звезды, т.е. в очень сильном центральном гравитационном поле нейтроны живут долго без распада, накапливаясь в таком количестве, что образуют достаточно толстую атмосферу. В конечном итоге, этот слой нейтронов, отдаляясь в область слабого гравитационного поля и распадаясь, формирует слой протонов и антипротонов, которые аннигилируют взрывом сверхновой, т.е. происходит одновременный вынужденный взрыв-аннигиляция всей атмосферы.
Нейтрон обладает внешними и внутренними свойствами. Внешние свойства обнаруживают с помощью различных технических средств и приёмов вычислений системы измерений СИ. К ним относятся внешние поля нейтронов, пространственный размер, спин, заряд массы, магнитный момент, отсутствие электрического заряда, период полураспада. Внешние поля заряда массы (гравитационные поля) создаются также как и у мюонов, но в отличие от них сформированы суммарным излучением трёх контурных оболочек нейтрона, обладающего набором уже различных частот. Внешнее электрическое поле нейтрона, как и в атоме, полностью уничтожено аннигиляцией противоположных по заряду излучаемых зёрен-электропотенциалов. Кроме того нейтрон и протон имеют очень большие аномальные магнитные моменты, которые в 1,91 и 2,79 раз соответственно больше по абсолютной величине ядерного магнетона, что свидетельствует о значительных токах магнитных монополей внутри их оболочек.
В реальном рассмотрении в основу положена структура, основанная на электромагнитной модели (а не кварковой) нейтронов, разработанной в Стэнфордском университете научной группой во главе с Хофштадтером[27 - Hofstadter R. Электромагнитная структура ядер и нуклонов. М. ИЛ. 1958, сб. переводов. H. Schopper, Phys. Bl?tter, 7, 316 (1961).] – 1956 год. Начиная с 1958 года, подобная модель была развита и дополнена Р. Вильсоном с сотрудниками из Корнельского университета, Г. Шоппером и С. Бергиа с сотрудниками по идеям Фрэзера и Фулко, Намбо и Чу. Из результатов этих изысканий следует, что «…структура нуклонов также, как и в атоме, состоит из плотного ядра (4 х 10
см) и внешних оболочек. На роль ядра может претендовать нейтральные К-мезоны, а на роль внешних оболочек нейтральные и заряженные ?-мезоны. Основная идея, на которой построены эти модели, заключается в том, что протон и нейтрон испускают заряженные ?-мезоны, но затем возвращают их назад на свои внешние оболочки. Причём их испускание происходит в состоянии с отличным от нуля моментом количества движения, т.е. они должны вращаться вокруг уже названного ядра нуклонов. Из-за этого и образуются круговые токи, которые порождают аномальные магнитные моменты».
Американский физик-теоретик Джулиан Швингер в основу магнитной модели[28 - [215] Schwinger J. A Magnetic Model of Matter, Science 165 (No. 3895), 757 (1969).] материи всех элементарных частиц заложил дуально заряженные частицы – это магнито-электрические дионы, которые являются, как он считает) составной частью и нейтронов. И есть все основания считать, как он полагает, что основа всех элементарных частиц и в том числе нейтронов и протонов состоит из подобных дионов, а не из кварков. Это подтверждается тем, что при аннигиляции нуклона и антинуклона (дезинтеграция материи) зарегистрирован вылет нескольких ?-мезонов, а не каких то виртуальных кварков или пентакварков, которые никогда не были экспериментально зарегистрированы.