Сборник.

Происхождение Вселенной. Как с помощью теории относительности Эйнштейна можно проникнуть в прошлое, понять настоящее и предвидеть будущее Вселенной



скачать книгу бесплатно

© New Scientist, 2017

© Оформление, ООО «Издательство АСТ», 2019

Авторы-составители

Главный редактор – Элисон Джордж, редактор серии «Специалисты комментируют» для журнала New Scientist.


Редактор – Стивен Бэттерсби, автор научных и научно-популярных книг по физике, консультант журнала New Scientist.


В данную книгу вошли доклады, прочитанные в рамках мастер-класса, организованного журналом New Scientist в 2016 году, а также статьи, ранее публиковавшиеся в журнале New Scientist.

Авторы научно-популярных статей

Майкл Дафф – почетный профессор теоретической физики в Имперском колледже Лондона, основоположник теории супергравитации.

Педро Феррейра – профессор астрофизики Оксфордского университета, специалист в области общей теории относительности. Занимается исследованием природы темной материи и темной энергии.

Джон Гриббин – астрофизик и автор научно-популярных книг. Приглашен для работы в качестве научного сотрудника по астрономии в Сассекский университет, где исследует проблему определения возраста Вселенной.

Мартин Хендри – профессор гравитационной астрофизики и космологии Университета Глазго, специалист по гравитационно-волновой астрономии.

Дэн Хупер – младший научный сотрудник Национальной ускорительной лаборатории им. Энрико Ферми в Батавии (штат Иллинойс, США) и доцент кафедры астрономии и астрофизики Чикагского университета.

Сабина Хоссенфелдер – научный сотрудник Франкфуртского института перспективных исследований, занимается исследованием квантовой гравитации.

Юджин Лим – космолог-теоретик в Королевском колледже Лондона. Широкий спектр его интересов простирается от теории струн до той роли, которую играет распространение квантовой информации в космосе.

Эндрю Понтцен – лектор в Университетском колледже Лондона, занимается проблемами образования галактик и вычислительной космологии.

Марика Тейлор – профессор теоретической физики Саутгемптонского университета, специалист по черным дырам.

Милена Важецк – историк науки, занимается социальными и политическими проблемами современной науки.


Также благодарим следующих авторов:

Анил Анантасвами, Джейкоб Арон, Майкл Брукс, Маркус Чоун, Стюарт Кларк, Дэниэл Коссинс, Аманда Гефтер, Лиза Гроссман, Наоми Любик, Говерт Шиллинг, Джошуа Сокол, Колин Стюарт, Ричард Вебб, Йон Уайт.

Введение

Невозможно забыть или с чем-нибудь перепутать этот блеск светлых пушистых волос: в нем отражается совершенно новая картина мира, где время и пространство слиты воедино, масса превращается в энергию, обнажается структура и ткань Вселенной, которая затем разрывается в клочья…


Прошло более ста лет с тех пор, как Альберт Эйнштейн выковал теории относительности, ставшие величайшими достижениями человеческого разума.

Но и поныне мы пытаемся понять всю их суть, до сих пор сокрытую от нас. Одним из следствий появления теорий относительности стало то, что мы стали лучше понимать жизнь Вселенной, ее зарождение в Большом взрыве и последующие этапы ее расширения. Еще один вывод, который следует из вычислений самого Эйнштейна, проведенных им в 1920-е годы, – существование темной энергии, доминирующей во Вселенной.

В 2016 году мы столкнулись, вероятно, с самым «релятивистским» моментом в истории, когда ученые сумели обнаружить гравитационные волны, рожденные в результате столкновения двух черных дыр и блуждавшие в расширяющемся пространстве-времени миллиарды лет. Вскоре гравитационно-волновые детекторы и радиотелескопы начнут исследовать природу горизонта событий, черту невозврата на краю черной дыры, чтобы узнать, действует ли теория относительности в этих экстремальных условиях. Между тем на стыке теории относительности и квантовой механики возникают все новые и новые гипотезы, от суперструн до квантовых треугольников и других необычных идей, соревнующихся друг с другом в попытке более глубоко объяснить сущность реальности. Рано или поздно даже Эйнштейн должен быть превзойден!

В книгах этой серии собраны мысли ведущих физиков и лучшие статьи, опубликованные в журнале New Scientist. Они познакомят вас с последними достижениями в области теории относительности Эйнштейна и с тем влиянием, которое идеи относительности оказали на наше восприятие Вселенной.

Стивен Бэттерсби, редактор

Глава 1
Истоки теории относительности

В 1915 году в голове клерка из швейцарского патентного бюро родилась идея, которая перевернула наши представления о пространстве и времени. Этим клерком был Альберт Эйнштейн (1879–1955), а идея, которую он выдвинул, называется общей теорией относительности. Эта глава описывает путь, пройденный автором и приведший его к судьбоносному открытию.

Относительно краткая история

Во-первых, следует пояснить с самого начала: Эйнштейн не был одиноким гением. Его вклад в науку колоссален, но он появился не на пустом месте.


Эта история началась тогда, когда шотландский физик Джеймс Клерк Максвелл (1831–1879) создал теорию, в которой сумел объединить казавшиеся ранее разнородными физические понятия. В 1860-е годы ему удалось собрать воедино различные теории магнитного и электрического поля и описать их с помощью единой системы уравнений. Не менее замечательным оказалось следующее предсказание Максвелла: объединившись, электрические и магнитные поля образуют волну, которая распространяется со скоростью света. К концу XIX столетия становится ясно, что это далеко не случайность: ведь сам свет состоит из таких «электромагнитных волн».

Удивительно, но из уравнений следовало, что волны всегда распространяются с одной и той же скоростью, независимо от того, находится ли в движении их источник. Более того, ваша скорость как наблюдателя тоже не имела значения. В этом было что-то неправильное. Если я бросаю предмет вперед из движущегося экипажа, он должен лететь быстрее, чем если бы я его бросил, стоя на месте. Почему свет должен быть исключением?

Исходя из этой логики, ученые начали проводить исследования, ставившие своей целью найти изменения скорости света. Самым известным стал эксперимент, проведенный в 1887 году американскими физиками Альбертом Майкельсоном (1852–1931) и Эдвардом Морли (1838–1923). Они пытались наблюдать изменения скорости света по мере того, как Земля вращается вокруг оси и вокруг Солнца. Луч света расщеплялся на два пучка, которые посылались вдоль двух направлений под прямым углом друг к другу. Физики хотели обнаружить небольшую разницу во времени прохождения пучков света вдоль этих направлений. Ведь установка была по-разному ориентирована по отношению к движению Земли. Но, несмотря на всю скрупулезность и тщательность измерений, результат был одним и тем же: скорость света оставалась неизменной.

В 1895 году голландский математик Хендрик Лоренц (1853–1928) предложил свое объяснение постоянства скорости света. Он разработал ряд правил, которые связывают увиденное наблюдателем, находящимся в движении, с тем, что он должен видеть в состоянии покоя (см. главу 2). В этих правилах он ввел понятие некоего «фиктивного» времени: если вы двигаетесь с высокой скоростью, вам надлежит использовать именно это время, которое будет отличаться от времени, отсчитанного нормальными часами. Благодаря этому математическому трюку все становится на свои места, и скорость света оказывается одинаковой для всех.

Искривление времени

Пятью годами позже французский ученый Анри Пуанкаре (1854–1912) написал статью «Измерение времени», в которой оспаривал наше непреклонное отношение ко времени. Если Лоренц представлял искривление времени просто как математический трюк, то Пуанкаре (не ссылаясь явно на Лоренца) показал, что в будущем, по-видимому, придется отказаться от концепции единства физического времени. Этот своеобразный философский прорыв помог в дальнейшем Эйнштейну сформулировать свою теорию относительности.

С философской точки зрения второй побуждающий импульс для творчества Эйнштейна исходил от австрийского физика и философа Эрнста Маха (1838–1916). В своей книге «Механика. Историко-критический очерк ее развития» (1883) Мах утверждал, что мы никогда не должны говорить об абсолютном движении тела; мы можем говорить только о его движении относительно чего-либо.

Итак, почва для Эйнштейна была готова. В статье «Об электродинамике движущихся тел» он выдвинул два предположения:

1. Законы физики остаются одинаковыми в любой системе отсчета, движущейся с постоянной скоростью.

2. Мы должны со всей серьезностью относиться к уравнениям Максвелла – любой луч света движется в любой такой системе отсчета с одинаковой скоростью.

Об Альберте Эйнштейне

Альберт Эйнштейн родился на юго-западе Германии в городе Ульме 14 марта 1879 года. Он был вторым ребенком в семье Германа Эйнштейна, основателя электрической инженерной компании, и его жены Паулины. Семья, которая происходила из евреев-ашкеназов, не соблюдавших религиозные ритуалы, вскоре переехала в Мюнхен, где Альберт и пошел в школу.

В возрасте 17 лет Эйнштейн поступил в швейцарскую Федеральную политехническую школу в Цюрихе, чтобы получить диплом преподавателя физики и математики. Здесь же он познакомился со своей сокурсницей Милевой Марич, на которой женился в 1903 году. Из переписки супругов, обнаруженной в 1987 году, следует, что еще до официальной регистрации брака, в 1902 году, у них родилась дочь. Судьба этой девочки неизвестна: может быть, она была удочерена третьими лицами либо умерла в младенчестве. Позднее у супругов родились два сына, Ганс и Эдуард. Но семейная жизнь не удалась, и в 1919 году супруги развелись, после чего Альберт Эйнштейн женился на своей кузине Эльзе Лёвенталь, урожденной Эйнштейн.

После окончания высшего учебного заведения Эйнштейн провел два года в неудачных поисках преподавательской работы и, в конце концов, поступил на работу в Швейцарское патентное бюро. Именно здесь, в свободное время, он сделал свои первые открытия и написал замечательную серию статей в знаменательный для него 1905 год (см. «Чудесный год» в главе 2). Все его труды привели к тому, что в 1908 году он был назначен преподавателем в Бернском университете в Швейцарии. Довольно скоро Эйнштейн получил должность профессора в Цюрихском университете. К 1914 году он уже являлся профессором Берлинского университета. Без малого два десятка лет Эйнштейн работал в этом университете. Затем политическая ситуация в Германии изменилась, нацистские власти стали преследовать евреев, запрещая им занимать преподавательские должности в университетах. В 1933 году Эйнштейн отказался от гражданства Германии и уехал в Америку. Он получил работу в Институте перспективных исследований в Принстоне (штат Нью-Джерси) и работал там до пенсии.

Эйнштейн знаменит не только своими замечательными научными открытиями. Он был страстным любителем музыки, пацифистом, борцом за права человека и сторонником сионизма. Он умер от аневризмы в 1955 году в возрасте 76 лет. Место, где развеян его прах, неизвестно. Мозг ученого был сохранен (см. далее в этой главе).

Относительно специальная

Несколько коротких страниц статьи Эйнштейна, как рог изобилия, вместили в себя все те постулаты, которые мы сейчас называем специальной теорией относительности. Многие данные были известны и ранее, но теперь они были собраны вместе и получили ясную физическую интерпретацию. Стало ясно, например, что замедление времени вполне реально: находящиеся в движении часы действительно должны запаздывать. Возможно, благодаря крепкому фундаменту, заложенному Лоренцем и Пуанкаре, специальная теория относительности Эйнштейна, предложенная им в 1905 году, не вызвала больших возражений. Конечно, она не произвела такого фурора, как последующая за ней общая теория относительности, для создания которой потребовалось еще более десятка лет.

Первый результат в этом направлении был получен польско-немецким математиком Германом Минковским (1864–1909), но он оказался малоутешительным. Минковский предложил лаконичное объяснение специальной теории относительности, соединив воедино пространство и время. События, разворачивающиеся в пространстве и времени, можно представить в виде карты: нижняя часть карты – это далекое прошлое, верхняя – отдаленное будущее, а слева и справа располагаются самые различные места в пространстве. Минковский понимал, что движение происходит по различным направлениям пространства-времени: вместо того, чтобы двигаться строго вверх, вы отклоняетесь то влево, то вправо. Математически это очень похоже на вращение, когда часть вашего пространства заменяется временем, а часть вашего времени – пространством. Такая абстрактная картина правильно, в стройной и логичной манере, приводит к результатам специальной теории относительности.

Но Эйнштейн понимал, что специальная теория относительности имеет ограничения. Она корректно связывает различные системы координат только в том случае, если они движутся с постоянными скоростями. Эйнштейна также беспокоила роль гравитации. Наилучшей теорией гравитации на тот момент была теория всемирного тяготения Ньютона. Ньютон, как и Максвелл, стремился к объединению различных явлений: он показал, что та же сила, которая удерживает нас на поверхности Земли, удерживает и Луну от бегства в космическое пространство и заставляет Землю кружить вокруг Солнца. Эта теория работает прекрасно, но подразумевает наличие мгновенной притягивающей силы, подобно тому, как присутствие Земли у нас под ногами означает, что к нам с ее стороны приложена сила. В каждый момент времени мы чувствуем притяжение всех галактик, рассеянных в космосе. Такие представления не уживаются со специальной теорией относительности, в которой ничто не может распространяться мгновенно; чтобы уладить противоречия, приходится предположить, что скорость движения тел, а также их взаимодействия, не должна превышать скорость света.

Принцип эквивалентности

Первую попытку внедрить гравитацию в свою теорию Эйнштейн предпринял в 1907 году, сформулировав так называемый принцип эквивалентности. Он указал на то, что при падении мы как будто находимся в мире без гравитации. Окружающие нас предметы, находящиеся одновременно с нами в состоянии падения, будут казаться неподвижными, потому что падают с такой же скоростью. Именно это и происходит на Международной космической станции: то, что космонавты находятся в невесомости, вовсе не означает, что на них не действует поле притяжения Земли; просто космическая станция все время падает на Землю вместе с космонавтами. (Другое дело, что она никогда не упадет на нашу планету, так как одновременно двигается с высокой скоростью в горизонтальном направлении.)

Гению Эйнштейна, вдохновленному философскими воззрениями Маха, хватило смелости утверждать, что любой эксперимент, выполненный, например, в условиях космической станции, покажет такой же результат, как и при полном отсутствии гравитации. Это и есть принцип эквивалентности.

Самое любопытное, что теория гравитации Эйнштейна вытекала из глубоких размышлений о ситуациях, в которых сама сила, о которой идет речь, просто-напросто исчезает. Поэтому неудивительно, что потребовалось привлечь основательный математический аппарат, чтобы превратить идею в теорию, способную выдвинуть осмысленные предсказания. В 1913 году Эйнштейн в своих изысканиях взял на вооружение идею Минковского о пространстве-времени. Эйнштейн обнаружил, что верная картина движения объектов в гравитационном поле получится, если предположить, что пространство-время искривлено, а объекты пытаются проложить себе кратчайший путь через это искривленное пространство-время. Но понять, что заставляет пространство-время искривляться, он не мог.

На этих порах Эйнштейн начал сражение с математикой. В 1915 году в течение нескольких месяцев он вел бурную переписку со многими учеными, в особенности с немецким математиком Давидом Гильбертом (1862–1943). Работы Эйнштейна и Гильберта были настолько взаимосвязаны, что трудно точно сказать, кто из них первым создал уравнения гравитационного поля. Но, вне всякого сомнения, Эйнштейн был движущей силой в этом процессе. В конце концов, в ноябре 1915 года, в своей общей теории относительности он смог описать, как пространство-время искривляется под действием массы, энергии и давления:



Великий смысл заключается в этих нескольких символах. В течение шести месяцев после создания уравнений поля Эйнштейн написал статьи о гравитационных волнах. Это произошло за сто лет до того, как эти волны были непосредственно обнаружены (см. главу 4). Существование черных дыр также было предсказано вскоре после опубликования общей теории относительности (см. главу 3).

Другие последствия заставили себя ждать гораздо дольше. В 1949 году австрийско-американский математик и философ Курт Гёдель (1906–1978) предпринял атаку на теорию относительности. Любитель абсурдов, Гёдель сумел показать, что общая теория относительности разрешает совершать путешествия в прошлое. Подобное предположение является проклятием для физиков: ведь если мы можем вернуться в наше собственное прошлое, то что удержит нас от того, чтобы изменить его? Каждый любитель научной фантастики скажет вам, что ни к чему хорошему это не приведет.

Кротовые норы и не только

Рассуждения Гёделя предполагали, что вся Вселенная вращается, что с нашей сегодняшней точки зрения не соответствует действительности. Однако в 1988 году физики Майк Моррис и Кип Торн открыли еще одну возможность для путешествий во времени. Они показали, что кротовые норы – кратчайшие пути из одной части пространства-времени в другие – могут в принципе быть открыты, если грядущая цивилизация овладеет новым экзотическим типом энергии. Стоит однажды распахнуть эти норы, как по ним можно будет со свистом проноситься сквозь пространство и время. Хотя такие перспективы кажутся весьма отдаленными, уравнения Эйнштейна вполне допускают путешествия во времени, и это провоцирует многочисленные горячие дискуссии среди физиков.

В то же время обширная нива науки остается еще не вспаханной. Только недавно появилась возможность решать уравнения Эйнштейна на компьютерах, и это открыло путь к исследованию странного поведения черных дыр и других экзотических объектов. Прибавьте сюда еще и открытие гравитационных волн. И теперь мы можем вплотную заняться теорией и ее приложениями – чем, впрочем, мы уже и занимаемся сотню лет. Но мы не должны забывать, что вся ширь теории относительности является заслугой не только гения Эйнштейна, но и его предшественников, современников и множества других людей, которые пытались понять, что все это означает.

«Наиболее ярким и захватывающим пропагандистом идей Эйнштейна всегда был сам Эйнштейн».

Стивен Хокинг. «Самая упрямая иллюзия» (A Stubbornly Persistent Illusion, 2008)
Эйнштейн о себе

В 2010 году в Иерусалиме, в Израильской академии естественных и гуманитарных наук, впервые во всей полноте была представлена оригинальная рукопись Альберта Эйнштейна «Основы общей теории относительности».

Эйнштейн написал свою 46-страничную статью в 1916 году, а через три года после этого наблюдение солнечного затмения предоставило первое убедительное подтверждение общей теории относительности. В статье говорилось о возможной проверке теории, а также предсказывалось поведение перигелия орбиты Меркурия, которое до появления общей теории относительности считалось аномальным. В статье также обсуждался вопрос о возможности создания всеобъемлющей теории материи с помощью объединения теорий электромагнитного и гравитационного поля.

В 1916 году Эйнштейн еще не знал о существовании двух других сил, которые также необходимо учитывать, – слабое и сильное ядерное взаимодействие. Но поднятый Эйнштейном вопрос был очень важным и остается открытым до сих пор. Легионы физиков пытаются дать ответ на аналогичный вопрос в процессе поиска пути объединения общей теории относительности и квантовой механики, чтобы создать окончательную теорию всего.

Что-то завораживающее есть в чтении строк, написанных самим Эйнштейном (оцифрованные версии этой и других его статей можно найти в Интернете). Его уникальный философский стиль временами обманчиво прост, полон познавательных мысленных экспериментов и всегда подвергает сомнению наши самые устоявшиеся взгляды на действительность. В 1921 году Эйнштейну была присуждена Нобелевская премия по физике за его «заслуги перед теоретической физикой и особенно за открытие закона фотоэлектрического эффекта».



скачать книгу бесплатно

страницы: 1 2 3 4