Николай Симонов.

Несостоявшаяся информационная революция. Условия и тенденции развития в СССР электронной промышленности и средств массовой коммуникации. Часть I. 1940–1960 годы



скачать книгу бесплатно

Конструкцию триода в 1915 г. усовершенствовал сотрудник исследовательской лаборатории компании Siemens and Halske Вальтер Шоттки. Он обнаружил зависимость термоэлектронной эмиссии от внешнего электрического поля и предложил для ослабления этого эффекта устанавливать вблизи катода экранную сетку. Запатентованная им в 1915 г. радиолампа была названа «тетродом», по числу электродов («тетра» по-гречески «четыре»). Научные открытия Шоттки в области физики твердого тела и электроники привели к изобретению множества устройств, носящих в настоящее время его имя.

Первые радиолампы имели слабый коэффициент усиления. Радиосигналы в эфире часто перекрывались один другим и мешали друг другу. Необходимы были дополнительные изыскания, чтобы превратить триод в настоящий усилитель. Этим новым устройством стала регенеративная схема (англ. pulse regenerating circuit), запатентованная в 1914-1916 гг. Ли де Форестом и Эдвином Армстронгом (Edwin Armstrong). Принцип изобретения состоял в том, что сигнал, полученный с выхода приемно-усилительной лампы, подавался обратно на вход. Затем в радиоприемниках появились усилители высокой и низкой частоты.

В 1915 г. ученый и инженер Ирвинг Ленгмюр (Irving Langmuir) из исследовательской лаборатории General Electric Company (GE) изобрел парортутный вакуумный насос, в 100 раз более мощный, чем любой, ранее существовавший. Это дало ему возможность сконструировать первый полноценный вакуумный триод (в патенте изобретателя прибор назывался «плиотрон») и, таким образом, положить начало развитию вакуумной электроники. Электрические токи в вакууме нашли широчайшую область применения. Это – все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры и СВЧ-генераторы. И везде, где производятся электровакуумные приборы, применяются насосы ленгмюровского типа.

В 1932 г. Ленгмюр удостоился Нобелевской премии «за открытия и исследования в области химии поверхностных явлений», одним из которых являлось описание им в 1916 г. термоэлектронной эмиссии вольфрамовой нити накала, покрытой слоем оксида тория. В последующие годы вакуумные радиолампы с вольфрамовым торированным катодом и цепями накала, питающимися переменным током, во всем мире были признаны наилучшими по своей надежности и экономичности.


Большинство приемно-усилительных радиоламп, применявшихся в массовых радиоустройствах (радиоприемники и телевизоры) в 1930-1950-е годы, представляли собой полые стеклянные баллоны диаметром 2-3 см и длиной около 6 см и имели стандартный электрический разъём – октальный цоколь. Их изготовление осуществлялось по так называемой «гребешковой технологии». Собранная арматура лампы (гибкие выводы и несущие траверсы) заваривалась в специальную стеклянную ножку. Ножка вваривалась в стеклянный баллон, а из «юбки» баллона формовался плоский «гребешок», в который вторично заваривались длинные гибкие выводы от электродов. Затем эти выводы приваривались к штырькам разъёма.

Предназначение радиолампы – создание потока электронов, перемещающихся от разогретого катода к аноду, и управление этим потоком.

Чтобы на своем пути электроны не сталкивались с молекулами воздуха, в баллоне лампы создавали высокий вакуум. Воздух из лампы откачивали насосом, и давление понижалось до одной тысячной миллиметра ртутного столба. Часть молекул воздуха оставалась и, чтобы их удалить, перед созданием вакуума в баллоне лампы на никелевой пластине помещали вещество, активно поглощающее газы. Понизив давление внутри лампы, её запаивали и размещали возле высокочастотной катушки. От этого в веществе, поглощающем газы, наводились токи, которые раскаляли его, и оно испарялось. Вот эти-то пары, поглотив газы, оседали на внутренних стенках баллона лампы, отчего часть стекла становилась непрозрачна.


После окончания I мировой войны радиотехника выделяется в самостоятельную инженерно-техническую дисциплину, предмет исследования которой – колебательные и связанные контуры, фильтрующие цепи, усилители низкой, промежуточной и высокой частоты, модуляторы, детекторы, мультивибраторы, генераторы, ограничители, линии задержки и т. д. Небольшие заводские лаборатории GE, AT&T и других ведущих американских электротехнических компаний превращаются в крупные научно-исследовательские центры с многотысячными коллективами ученых, инженеров, техников и вспомогательного персонала. В 1907 г., когда де Форест обратился за патентом на триод, персонал лаборатории GE в Скенектеди (штат Нью-Йорк) насчитывал 40 ученых и инженеров и 55 технических работников. В 1918 г. персонал лаборатории GE состоял из 3 тыс. человек.

Прогресс в использовании радиоприемных устройств дал возможность в 1920 г. открыть первую радиовещательную станцию в США (г. Питсбург). В 1921 г. заработала первая радиовещательная станция во Франции. С помощью передатчика мощностью 5 кВт, установленного на Эйфелевой башне, на волне 2600 м передавались новости, сообщения о погоде и сигналы точного времени. В 1922 г. была создана Британская Вещательная Компания (British Broadcasting Company – BBC). В 1923 г. вступила в эксплуатацию московская радиостанция имени Коминтерна с передатчиком мощностью 12 кВт. Станция работала на волне 3000 м., и была рассчитана на прием ее вещания «революционным пролетариатом европейских стран». В Японии регулярное радиовещание и производство бытовых детекторных радиоприемников (самая популярная модель – “Sharp Dyne”) начинается в 1925 г.

С изобретением усилителя промежуточной частоты на 465 кГц, классическим типом радиоприемного устройства становится супергетеродин, чувствительный ко всему диапазону радиоволн, включая короткие. Благодаря аудиоусилителям удалось подключить к радиоприемнику громкоговоритель и прослушивать передачи целой аудиторией. В США первые супергетеродины (на шести лампах) поступили в продажу в марте 1924 г.


Первые промышленные образцы электронных ламп в России в 1914 г. разработал инженер Русского общества беспроволочных телеграфов и телефонов (РОБТиТ) Н. Д. Папалекси. «Пустотелые реле Папалекси» предназначались для усилителей звуковой частоты в армейском радиотелеграфе. Откачка собранных ламп производилась с помощью парортутного насоса конструкции С. А. Боровика на заводе пустотных аппаратов Н. А. Федорицкого (Набережная реки Фонтанка, 165).

В 1915 г. под руководством поручика М. А. Бонч-Бруевича началось производство электронных ламп в мастерских Тверской приемной радиостанции международных сношений. Аноды этих ламп изготавливались из железной сетки в целях лучшей теплоотдачи, а для удлинения срока службы в них были вставлены два катода на цоколях, расположенных друг против друга. Когда сгорал один катод, лампу переворачивали и включали другой.

Местом рождения отечественной радиопромышленности считается Кронштадтская мастерская «для производства и ремонта аппаратов телеграфирования без проводов». Она была организована по заданию Морского технического комитета А. С. Поповым 2(14) сентября 1900 г. В 1910 г. мастерская была переведена в Петербург и в 1915 г. стала именоваться Радиотелеграфным заводом морского ведомства (с 1922 г. «Радиотелеграфный завод имени Коминтерна»).

После Октябрьской революции 1917 г. все радиотелеграфные заводы страны были национализированы. 2 декабря 1918 г. В. И. Ленин подписал «Положение о радиолаборатории с мастерской Народного Комиссариата почт и телеграфов». Нижегородская радиолаборатория – первый советский научно-исследовательский центр в области радиотехники и электроники, где в 1918-1923 гг. были разработаны первые в Европе образцы генераторных электронных ламп с водяным охлаждением.

28 июля 1924 г. советское правительство приняло постановление «О частных приемных радиостанциях», закрепившее за гражданами страны право владения собственными радиоприемниками. В 1924 г. Трест заводов слабого тока приступил к серийному производству детекторных приемников «П-2» и «ЛДВ» («Любительский Детекторный Вещательный»). В 1925 г. поступил в продажу ламповый радиоприемник «Радиолина № 2». Он изготавливался по французской лицензии, но с использованием усовершенствованных радиоламп Р-5 и «Микро» производства ленинградского Электровакуумного завода. В 1925 г. в СССР насчитывалось около 20 тыс. радиоприемных устройств, из которых только 5 % являлись ламповыми.

Первым отечественным серийным супергетеродином был приемник танковой радиостанции 71-ТК разработки 1932 г. Первый бытовой супергетеродин «СВД» был запущен в серийное производство в 1936 г.


Радиоламповое производство в Европе и в США создавалось на базе существующих предприятий по изготовлению осветительных ламп накаливания. Этому способствовала родственность многих производственных операций и технологических процессов. Классическим примером удачного совмещения нескольких видов производства электровакуумных приборов: ламп накаливания, рентгеновских трубок и радиоламп, – являются «Электроламповые заводы Филипса». В 1923 г. эта голландская фирма выпустила первую серийную радиолампу Miniwatt, выгодно отличавшуюся эксплуатационной надежностью и значительно меньшим энергопотреблением. К 1933 г. «Электроламповые заводы Филипса» произвели 100 млн. радиоламп различных конструкций.

Кроме радиотехники электронные лампы нашли применение для выполнения таких ответственных операций, как управление амплитудой и длительностью выходного тока. Их использовали вместо электромагнитных контактов и реле в управлении электродвигателями, электропечами и станками. Во многих странах мира стали широко применяться низкочастотные направленные радиомаяки для навигации полётов самолётов в ночное время.

В конце 1920-х годов одновременно в Европе и Америке были разработаны комбинированные многоэлектродные радиолампы с экранными сетками: пентоды, гептоды и октоды, что позволило сократить количество радиоламп на одно устройство в среднем до 1-3-х шт., уменьшить вес и габариты профессиональных и бытовых радиоприемников. Радиотехника и электроника перешли к освоению и использованию диапазона ультракоротких волн – метровых, дециметровых, сантиметровых и миллиметровых. Пик инноваций в электровакуумной технике пришёлся на 1934 год – в этом году производители выпустили максимальное количество новых разработок, в том числе первые радиочастотные пентоды-жёлуди. Наметился переход стационарной аппаратуры с напряжений накала 2.5 В и 4 В на напряжение 6.3 В.

В 1930-е годы, наперекор «великой депрессии», начинается «золотая эра» ламповой электроники. Этот период также называют «золотым веком радиовещания». В США объем продаж ламповых радиоприемников с нескольких тысяч дорогостоящих «радио-музыкальных ящиков» (англ. Radio Music Boxes) вырос в 1929 г. до 4,2 млн. шт. (из них четверть – автомобильные) при средней цене $110 (средний заработок рабочего промышленности в то время составлял $30 в неделю).[3]3
  Электроника: прошлое, настоящее, будущее/Пер. с английского под ред. В. И. Сифова.-М.:Мир, 1980. С. 20.


[Закрыть]
Спрос настолько опережал предложение, что изготовление простейших радиоустройств с намоткой катушек на коробках из-под завтрака и конденсаторов из упаковочной фольги цветочных магазинов стало национальным увлечением американской молодежи. В 1930 г. более 6 тыс. радиостанций вели передачи, прием которых осуществлялся 12 миллионами радиоприемных устройств.


В декабре 1933 г. Эдвин Армстронг запатентовал FM-радио, в котором, в отличие от AM-радио, используется не амплитудная, а частотная модуляция радиоволн. FM-радио позволяло уменьшить влияние помех в радиоэфире от атмосферного электричества и действующего электрооборудования. После вступления США во II мировую войну Армстронг бесплатно передал свои патенты на частотную модуляцию военному министерству. Важный подарок американским вооруженным силам, особенно после того как командование поняло, что переговоры германской армии, работающей на АМ, они могли легко глушить, а ЧМ в то время была неподавляема.

Армстронг доказал, что радиоволны, модулированные частотно, в отличие от радиоволн, модулированных амплитудно, могут проникать через ионосферу. Это проложило путь к радиосвязи в космосе и дало астрономам новый измерительный инструмент.

Все изобретения Армстронга быстро принимались промышленностью, но, зачастую, с нарушением его патентных прав. Известно, что после многолетних судебных тяжб с «Radio Corporation of America» он трагически покончил жизнь самоубийством.


В Европе всех перещеголяли немцы, первыми на практике реализовавшими лозунг: «Радио в каждый дом!» Общее количество радиоприемников, выпускавшихся с 1933 г. по программе Gemeinschaftserzeugnis, составляло не менее 2 млн. шт. в год. Курировал программу лично рейхсминистр пропаганды Йозеф-Пауль Геббельс.

Во всем мире радио было признано новой массовой культурой и активно развивающейся индустрией.

После того как телефон и радиоприемник стали привычными и совершенно необходимыми бытовыми приборами, была решена техническая задача создания радиоаппаратуры для связи с транспортными средствами. Первый радиотелефон с двусторонней связью AT&T запатентовала в 1925 г. С 1934 г. в США начинается развитие подвижной радиотелефонной связи (для нее было выделено 4 канала в диапазоне 30–40 МГц), которой имели право пользоваться спасательные службы, государственные учреждения, полиция и диспетчерские службы такси.

Авторы американской многотомной истории мобильных телефонов из Stanford Research Institute утверждают, что самое раннее описание концепции сотовой радиосвязи, которой сейчас во всем мире пользуются миллиарды людей, появилось в 1947 г. в «Техническом меморандуме» Bell Telephone Laboratories (Bell Labs) – научного подразделения AT&T.

В этом документе был подробно описан критический и уникальный элемент сотовой связи – многократное использование радиочастоты в небольших ячейках. Это – один из ключевых элементов технологии сотовой связи, отличающий ее от других видов подвижной (мобильной) радиосвязи: спутниковой и радиально-зоновой.


Техническая суть проблемы такова. Допустим, что территорию, например, штата Калифорния, необходимо полностью обеспечить устойчивой подвижной телефонной радиосвязью, которой могли бы воспользоваться многочисленные владельцы авто первой в мире автомобильной державы. Для этого, в первую очередь, следовало установить по всей территории штата базовые приёмопередающие станции. Каждая базовая станция имеет высокую мачту-антенну для передачи (приема) радиосигнала на максимально возможное расстояние. Зона покрытия станции на ровной поверхности – круг. Чем больше площадь круга (зоны покрытия), тем меньше требуется базовых станций. Каждый работающий мобильный радиотелефон принимает и передает базовой станции собственный уникальный идентификационный код, по которому она его опознает в качестве абонента, находящегося в зоне действия сети.

В мобильной радиосвязи канал – пара частот. Одна частота, чтобы передать и одна, чтобы получить. Это создает цепь или полный маршрут связи. При совершении звонка от одного абонента (владельца мобильного телефона) к другому выделяется определённый диапазон частот. Если в штате Калифорния десять тысяч человек будут звонить одновременно, то потребуется пять тысяч отдельных радиодиапазонов, что практически невозможно реализовать. Однако можно использовать отдельные диапазоны повторно. Главное, чтобы они не повторялись в зоне покрытия одной станции. Таким образом, если сеть имеет в своём распоряжении 100 диапазонов радиочастот и располагает 100 базовыми станциями, то потенциально она может обеспечить 100 ? 100 = 10 000 одновременных разговоров.

Систему радиосвязи, изложенную в докладе Bell Labs, впоследствии стали называть «cellular» («ячеистой» или «клеточной»). В русском варианте она называется сотовой, наверное, из-за того, что форма зоны покрытия базовой станции, составленная из перекрывающихся границ между другими зонами соседних базовых станций (их шесть), напоминает пчелиные соты.

В различных стандартах сотовой связи, естественно, имеются свои особенности. Но алгоритмы их работы в основе своей очень похожи. Если абоненту сети сотовой связи нужно позвонить, он нажимает соответствующую клавишу на своем телефоне, что аналогично снятию трубки. Во время набора номера радиотелефон занимает тот свободный канал, уровень сигнала в котором особенно велик. По мере удаления абонента от данной базовой станции и перемещения его в зону действия другой базовой станции, уровень сигнала падает, и качество разговора ухудшается.

Суровые математические расчеты сообщают о том, что максимально возможное расстояние между сотовым телефоном и базовой станцией может составлять 35 км. Это связано с работой технологии TDMA – каждой базовой станции выделяется тайм-слот в 0,577 миллисекунд (точнее говоря, работает отношение 15/26), за это время станция должна успеть ответить соте. Скорость распространения радиоволн конечна и хорошо известна – 300 тыс. км/с, максимальное расстояние вычисляется как простое перемножение времени на скорость. Вот так и получаются эти самые 35 км.

В действительности ячейки никогда не бывают строгой геометрической формы. Реальные границы ячеек имеют вид неправильных кривых, зависящих от условий распространения и затухания радиоволн, т. е. от рельефа местности обслуживаемой территории, плотности застройки и других факторов. Кроме того, в пределах зоны уверенного приема часто имеют место области, в которых прием сигнала невозможен (теневые зоны). Соответственно положение базовой станции лишь приблизительно совпадает с центром ячейки, который сложно определить однозначно.


Одним из самых ранних примеров использования сотовой радиосвязи считается система MTS, разработанная AT&T, и впервые испытанная 17 июня 1946 г. в Сент-Луисе (штат Миссури). В том же году компания запустила «службу хай-вэй», которая обслуживала автолюбителей, курсирующих между Нью-Йорком и Бостоном. Сервис выглядел довольно примитивно: абоненту присваивался один специальный канал, и вызовы совершались через телефониста-оператора, которому сообщался номер вызываемого абонента. Во время телефонного разговора приходилось нажимать кнопку, чтобы говорить, и отпускать ее, чтобы слушать. Базовые станции работали в диапазоне от 35 до 44 МГц, который оказался несовместимым с некоторыми радиоэлектронными устройствами военного и гражданского назначения, и вскоре проект был закрыт. Сотовая связь возродится 40 лет спустя, но уже на основе принципиально иной электроники – с использованием компьютеров, специального программного обеспечения и цифровых телекоммуникационных технологий.


Выдающуюся роль в развитии мобильной радиосвязи сыграл американский инженер и изобретатель Ал Гросс (1918–2000), который с детства был энтузиастом-радиолюбителем. В 1938 г. он изобрел и запатентовал портативное радиоприемное устройство, которое назвал хорошо известным теперь именем walkie-talkie, то есть что-то вроде «иду-говорю». Очень скоро walkie-talkie попал в поле зрения американской разведывательной конторы, предшественника нынешнего ЦРУ, – US Of ce of Strategic Services. Эта военизированная организация мобилизовала Гросса на службу, и вскоре аналоги walkie-talkie («Joan» и «Eleanor») успешно использовались разведчиками, работавшими во время II Мировой войны за линией фронта.

В 1949 г. Ал Гросс изобрел и запатентовал пейджер (от англ. page – «мальчик-слуга»), предназначив этот приборчик для срочного вызова больничных врачей к пациентам. Но оказалось, что медикам совсем не хочется, чтобы их в любой момент могли вызвать в реанимацию. Один врач так прямо и сказал изобретателю: «Тут рядом с больницей, где я работаю, есть поле для гольфа. Неужели Вы думаете, что я…» Тогда Гросс вынужден был трансформировать пейджер в устройство для электронного замка, которым запираются и открываются двери гаража (англ. garage door opener). В одном из последних интервью, опубликованном в газете Arizona Republic Newspaper, он сказал, что родился слишком рано, когда из изобретений и патентов невозможно было извлечь сколь-нибудь существенную выгоду. «Если бы я родился на 35 лет позже, Билл Гейтс стоял бы далеко позади меня».


Ключевой момент становления современной электроники и электронной промышленности – создание радиолокации, которую не без основания считают «одним из чудес XX века».

Радиолокационные станции (РЛС), обладая беспредельной дальностью действия, не зависящей от времени суток и погодных условий, помогают решать самые разнообразные и сложнейшие военные и народнохозяйственные задачи. Как пишет М. М. Лобанов, «по тонкости и остроумию применяемых приемов радиолокация превосходит все, что радиотехника дала в последующем радиосвязи, радионавигации, телевидению, кибернетике и т. п.»[4]4
  Лобанов М. М. Из прошлого радиолокации. – М.: Советское радио, 1975. С. 5.


[Закрыть]

Пионером практической радиолокации в Германии стал ученый-физик Рудольф Кюхнольд (1933 г.), в США – инженер Лоуренс Хайленд (1930 г.), в Англии – профессор Роберт Уотсон-Уатт (1935 г.), в СССР – военный инженер Павел Ощепков (1934 г.).


Слово «радар» вошло в научно-техническую литературу и речевой обиход, благодаря не вполне корректному техническому отчету американского морского ведомства (The United States Navy). В 1936 г. в США была разработана первая радиолокационная станция для обнаружения надводных кораблей, работавшая на частоте 200 МГц. В апреле 1937 г. ее протестировали на борту четырехтрубного эсминца «Лири» водоизмещением 1090 тонн. В официальном техническом отчете эта РЛС получили название RADAR – сокращенное обозначение от «Radio Detection And Ranging» (в переводе на русский, «прибор для радиопеленгации и дальнометрия»). В 1942 г. в погоне за немецкой субмариной U-275 «Лири» не устоял перед атакой акустической торпеды, и стал третьим американским эсминцем, потопленным в ходе Битвы за Атлантику.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9