Маркус дю Сотой.

О том, чего мы не можем знать. Путешествие к рубежам знаний



скачать книгу бесплатно

Поиск чисел в костях

Я кладу рядом со своей прекрасной костью из Лас-Вегаса еще две игральные кости. Спрашивается, если бросить все три кости сразу, что будет выгоднее: ставить на то, что выпадет 9 или 10? До XVI в. никаких средств, помогающих ответить на этот вопрос, не существовало. И все же любой достаточно много игравший сказал бы, что при броске только двух костей разумнее ставить на 9, чем на 10. В конце концов опыт игры вскоре подсказывает, что количество случаев, в которых выпадает 9, в среднем на треть больше, чем число таких, в которых выпадает 10. Но в случае трех костей почувствовать, как лучше ставить, сложнее, поскольку кажется, что 9 и 10 выпадают с равной частотой. Так ли это на самом деле?

Существование закономерностей, которые можно выгодно использовать в игре в кости, первым осознал в начале XVI в. в Италии один заядлый игрок по имени Джироламо Кардано. Эти закономерности нельзя было использовать в единичном броске. Они возникали в длинных сериях бросков, и игрок, подобный Кардано, который проводил за игрой в кости многие часы, мог бы извлечь из таких закономерностей некоторую выгоду. Он был настолько захвачен погоней за предсказаниями непознаваемого, что однажды даже продал имущество своей жены, только чтобы добыть денег на игру.

Кардано пришла в голову удачная мысль подсчитать число возможных вариантов выпадения костей. В случае броска двух костей таких вариантов 36. Они изображены на следующей схеме.



Только в трех из них сумма очков равна 10, а 9 можно получить в четырех вариантах. Поэтому Кардано рассудил, что, когда играют двумя костями, разумнее ставить на 9, чем на 10. Это не помогало в одной отдельно взятой игре, но в длинной серии игр Кардано мог выиграть, если бы придерживался результатов своих расчетов. К сожалению, строгость его математических рассуждений не сопровождалась такой же строгостью его поведения в игре. Он умудрился потерять все наследство, оставленное ему отцом, и даже вступал в поножовщину со своими соперниками, когда ему особенно не везло в кости.

Тем не менее он постарался добиться исполнения одного из своих пророчеств. По-видимому, он предсказал дату собственной смерти – 21 сентября 1576 г. Чтобы не оставлять исполнение этого предсказания на волю случая, он взял дело в собственные руки. Когда наступил предсказанный день, он совершил самоубийство. Мне, как бы я ни стремился к знаниям, это кажется некоторым перебором. Собственно говоря, большинство людей предпочло бы не знать дату собственной смерти. Но Кардано нужна была только победа, даже в игре в кости со смертью.

Перед самоубийством он написал книгу, которую многие считают первым шагом к пониманию поведения игральной кости, катящейся по столу. Хотя он написал свою «Книгу об играх случая» (Liber de Ludo Aleae) еще в 1564 г., этот труд долго оставался неизвестным и не был опубликован до 1663 г.

На самом деле не кто иной, как великий итальянский физик Галилео Галилей, использовал тот же анализ, который описал Кардано, чтобы выяснить, следует ли ставить на 9 или на 10, когда бросают три кости.

Он рассудил, что существует 6 · 6 · 6 = 216 возможных исходов падения костей. Из них в 25 случаях выпадает 9, а в 27 случаях – 10. Разница невелика, и обнаружить ее эмпирическим путем было бы непросто, но и ее достаточно для того, чтобы в долгой игре было выгоднее ставить на 10.

Прерванная игра

Математическое освоение игры в кости переместилось из Италии во Францию в середине XVII в., когда два крупных игрока, Блез Паскаль и Пьер де Ферма, обратили свои мысли на предсказание будущего этих кувыркающихся кубиков. Проблема понимания исхода броска костей заинтересовала Паскаля после встречи с одним из величайших игроков того времени, кавалером де Мере. Де Мере предложил Паскалю разрешить несколько интересных ситуаций. Одна из них сводилась к задаче, решенной Галилеем. Однако в число других входил вопрос о том, разумно ли ставить на выпадение по меньшей мере одной шестерки в четырех бросках кости, а также ставшая впоследствии знаменитой «задача о ставках».

Паскаль завязал оживленную переписку с великим математиком и юристом Пьером де Ферма, вместе с которым они попытались решить задачи, поставленные де Мере. В случае броска четырех костей можно рассмотреть 6 · 6 · 6 · 6 = 1296 разных исходов и подсчитать, в скольких из них выпадает шестерка, но задача становится при этом довольно громоздкой.

Вместо этого Паскаль рассудил, что в одном броске шестерка не выпадет с вероятностью 5/6. Поскольку все броски независимы, вероятность того, что шестерка не выпадет ни в одном из четырех бросков, равна 5/6 · 5/6 · 5/6 · 5/6 = 625/1296 = 48,2 %. Что означает, что вероятность увидеть шестерку равна 51,8 %. Это чуть больше половины, значит, вполне есть смысл ставить на такой исход.

«Задача о ставках» была еще интереснее. Предположим, что два игрока – назовем их Паскаль и Ферма – бросают игральную кость. Ферма выигрывает партию, если на кости выпадает 4 или более очков; в противном случае эту партию выигрывает Паскаль. Таким образом, при каждом броске кости у каждого из них есть половинный шанс на выигрыш партии. Они поставили на кон 64 фунта, которые достанутся тому, кто первым выиграет три партии. Однако игру прерывают, и продолжить ее невозможно. К этому моменту Ферма выиграл две партии, а Паскаль – одну. Как следует разделить между ними 64 фунта?

Традиционные попытки решения этой задачи были сосредоточены на том, что произошло в прошлом. Может быть, раз Ферма выиграл в 2 раза больше партий, чем Паскаль, то и его выигрыш должен быть в 2 раза больше? Но, если, например, перед тем как игра была остановлена, Ферма выиграл всего одну партию, такое решение становится бессмысленным. Паскаль в таком случае не получает ничего, хотя по-прежнему имеет шанс на победу. Никколо Фонтана Тарталья, современник Кардано, после долгих размышлений пришел к выводу, что решения не существует: «Это вопрос скорее юридический, чем математический, и любой вариант разделения выигрыша может стать поводом для тяжбы».

Однако другие не были готовы признать свое поражение. Они обратили внимание не на прошлое, а на то, что могло бы случиться в будущем. В противоположность первой задаче здесь они попытались не предсказать, как ляжет кость, а представить все возможные варианты будущего и разделить выигрыш в соответствии с разными исходами, благоприятными для того или другого игрока.

Здесь легко впасть в заблуждение. Кажется, что существует три сценария. Если следующую партию выигрывает Ферма, он забирает себе все 64 фунта. Если следующую партию выигрывает Паскаль, то играется еще одна, финальная партия, которую может выиграть либо Паскаль, либо Ферма. Поскольку в двух из этих трех случаев выигрывает Ферма, то, видимо, ему причитаются две трети ставки. В эту-то ловушку и попал де Мере. Паскаль утверждает, что это решение ложно: «Кавалер де Мере – человек очень остроумный, но он вовсе не математик; это, как вы знаете, огромный недостаток»[15]15
  Цит. по: Филиппов М. М. Блез Паскаль. Его жизнь, научная и философская деятельность. М., 2016.


[Закрыть]
. Вот уж действительно!

Паскаль же, напротив, был великий математик, и он считал, что выигрыш следует разделить иначе. Ферма может выиграть в следующей партии (и получить 64 фунта) с вероятностью 50 %. Но, если в следующей партии выиграет Паскаль, шансы обоих на победу в финальной партии равны, так что выигрыш можно разделить поровну – по 32 фунта каждому. Ферма в любом случае гарантированно получает 32 фунта. Поэтому оставшиеся 32 фунта следует разделить поровну, что в итоге дает Ферма 48 фунтов.

Ферма согласился с анализом Паскаля. «Я ясно вижу, что истина, будь она в Тулузе или в Париже, одна и та же», – писал ему в Тулузу Паскаль.

Пари паскаля

Анализ ставок в игре, разработанный Паскалем и Ферма, можно применить и к гораздо более сложным ситуациям. Паскаль выяснил, что тайна распределения выигрыша сокрыта внутри того, что теперь называют треугольником Паскаля.



Треугольник устроен таким образом, что каждое число в нем равно сумме двух чисел, расположенных непосредственно над ним. Полученные числа определяют, как следует разделить выигрыш в любой прерванной игре. Например, если Ферма до победы не хватает двух выигранных партий, а Паскалю – четырех, нужно взять строку треугольника номер 2 + 4 = 6 и найти сумму первых четырех чисел и сумму последних двух. Эти суммы дают пропорцию, в которой следует разделить выигрыш. В данном случае получается пропорция 1 + 5 + 10 + 10 = 26 к 1 + 5 = 6. Таким образом, Ферма получает 26/32 · 64 = 52 фунта, а Паскаль – 6/32 · 64 = 12 фунтов. В общем случае решение для игры, в которой Ферма не хватает n, а Паскалю – m выигранных партий, можно найти в (n + m) – й строке треугольника Паскаля.

Есть данные, что французы опоздали с открытием связи между этим треугольником и исходом азартных игр на несколько тысячелетий. Игральные кости и другие методы получения случайных результатов, например «И цзин», издавна использовали в Китае в попытках предсказать будущее. В тексте книги «И цзин», созданном около 3000 лет назад, для случайного выбора гексаграммы, значение которой затем можно истолковать, используется в точности та же таблица, которую Паскаль составил для анализа исходов подбрасывания монет. Однако создателем треугольника считают в наше время Паскаля, а не китайцев.

Паскаль интересовался не только игральными костями. Он предпринял знаменитую попытку приложения своей новой вероятностной математики к величайшему из неизвестных – существованию Бога.

Бог есть или Бога нет. Но на которую сторону мы склонимся? Разум тут ничего решить не может. Нас разделяет бесконечный хаос. На краю этого бесконечного расстояния разыгрывается игра, исход которой неизвестен. […] На чем же вы остановитесь? Так как выбор сделать необходимо, то посмотрим, что представляет для вас меньше интереса: вы можете проиграть две вещи, истину и благо, и две вещи вам приходится ставить на карту, ваши разум и волю, ваше познание и ваше блаженство; природа же ваша должна избегать двух вещей: ошибки и бедствия. Раз выбирать необходимо, то ваш разум не потерпит ущерба ни при том, ни при другом выборе. Это бесспорно; ну а ваше блаженство? Взвесим выигрыш и проигрыш, ставя на то, что Бог есть. Возьмем два случая: если выиграете, вы выиграете все; если проиграете, то не потеряете ничего. Поэтому не колеблясь ставьте на то, что Он есть[16]16
  «Мысли о религии и других предметах», перевод С. Долгова.


[Закрыть]
.

В этом рассуждении, известном под названием «пари Паскаля», он утверждает, что выбор веры в Бога приносит гораздо больший выигрыш. Если такой выбор ошибочен, вы ничего не теряете; если он справедлив, вы выигрываете вечную жизнь. И вместе с тем ставка на то, что Бога нет, в случае проигрыша приносит вечное проклятие, а в случае выигрыша не дает ничего, кроме знания, что Бога действительно нет. Этот аргумент рассыпается, если вероятность существования Бога на самом деле равна нулю, но, даже если это и не так, цена верования может оказаться слишком высокой по сравнению с вероятностью существования Бога.

Вероятностные методы, разработанные математиками, подобными Ферма и Паскалю, для разрешения неопределенности, оказались невероятно могущественными. Явления, считавшиеся недоступными для познания, выражением воли богов, начали становиться досягаемыми для человеческого разума. На сегодня такие вероятностные подходы являются лучшим из имеющихся у нас средств исследования буквально всего, от поведения частиц газа до подъемов и падений рынка ценных бумаг. Действительно, кажется, что сама природа материи отдана на милость математической вероятности, как мы увидим на «Рубеже третьем», говоря об использовании квантовой физики для предсказания поведения наблюдаемых нами частиц. Но с точки зрения поисков определенности такие вероятностные методы представляют собой раздражающий компромисс.

Я, безусловно, ценю величайшие открытия, сделанные Ферма, Паскалем и другими, но они не помогают мне узнать заранее, сколько очков выпадет на брошенной мной кости. Сколько я ни изучал математическую теорию вероятностей, меня никогда не покидало чувство неудовлетворенности. Единственное, что вбивает в голову любой курс теории вероятностей, – это идея о том, что, сколько бы раз подряд у вас ни выпадала шестерка, это никак не влияет на поведение кости при следующем броске.

Так можно ли как-нибудь узнать, как упадет моя кость? Или же это знание навечно останется недоступным? Не останется, если верить откровениям одного ученого, жившего за морем, в Англии.

Математика природы

Для меня Исаак Ньютон – главный герой борьбы с непознаваемым. Идея о том, что я могу узнать о Вселенной все, происходит из революционной работы Ньютона «Математические начала натуральной философии». Эта книга, впервые изданная в 1687 г., посвящена разработке нового математического языка, обещавшего дать инструменты, которые откроют секреты устройства Вселенной. В ней была предложена разительно новая модель занятий наукой. Как заявил в 1747 г. французский физик Алексис Клеро, эта работа «пролила свет математики на науку, которая до тех пор оставалась во тьме догадок и гипотез».

Она также была попыткой объединения, создания теории, которая описывала бы небесное и земное, великое и малое. Кеплер предложил законы, описывающие движение планет, которые он разработал эмпирически, опираясь на данные и пытаясь найти уравнения, которые воссоздавали бы прошлое. Галилей описал траекторию шара, летящего в воздухе. Гениальность Ньютона позволила ему понять, что эти два примера – проявления одного и того же феномена: гравитации.

Ньютон, появившийся на свет на Рождество 1643 г. в городе Вулсторп в Линкольншире, всегда стремился обуздать физический мир. Он делал механические и солнечные часы, строил миниатюрные мельницы на мышиной тяге, чертил бесчисленные планы зданий и кораблей и делал подробные зарисовки животных. Жившая в его доме кошка однажды исчезла, улетев на сделанном Ньютоном воздушном шаре. Однако отзывы его школьных учителей не сулили ему блестящего будущего: его называли «невнимательным и ленивым».

Надо сказать, что лень может быть не самым плохим качеством для математика. Она может быть мощным стимулом для изобретательного поиска какого-нибудь легкого способа решения задачи, избавляющего от упорной и монотонной работы. Но учителя, как правило, не ценят это качество.

И действительно, Ньютон так плохо учился в школе, что мать сочла его учебу пустой тратой времени и решила, что ему будет полезнее научиться управлять семейной фермой в Вулсторпе. К сожалению, в деле управления хозяйством Ньютон оказался столь же безнадежным, так что его снова отправили в школу. Хотя эта история наверняка апокрифична, говорят, что внезапное превращение Ньютона в ученого совпало с ударом по голове, который он получил от школьного хулигана. Как бы то ни было, после этого преображения Ньютон внезапно стал блестящим учеником и в конце концов поступил на учебу в Тринити-колледж в Кембридже.

В 1665 г., когда в Англии вспыхнула эпидемия бубонной чумы, Кембриджский университет был из предосторожности закрыт. Ньютон вернулся домой, в Вулсторп. Изоляция часто бывает важным ингредиентом изобретения новых идей. Ньютон запирался в своей комнате и размышлял.

Истина – дитя тишины и размышлений. Я постоянно держал предмет своих размышлений перед собой и ждал, пока первые проблески медленно, мало-помалу не разгорятся, превращаясь в яркий и ясный свет.

Будучи изолирован в Линкольншире, Ньютон создал новый язык, способный выразить картину постоянно изменяющегося мира, – язык математического анализа. Этому инструменту предстояло стать ключом к возможности заблаговременного знания о будущем поведении Вселенной. Именно этот язык дает мне надежду узнать, какой стороной может упасть моя игральная кость.

Математические фотографии

Математический анализ пытается разобраться в математической задаче, которая на первый взгляд кажется бессмысленной: деление ноля на ноль. Когда я роняю свою игральную кость на стол, именно эту задачу мне нужно решить, чтобы узнать мгновенную скорость кости, летящей в воздухе.

Скорость кости постоянно увеличивается, поскольку сила тяжести тянет ее к земле. Как же вычислить, чему равна эта скорость в любой момент времени? Например, с какой скоростью падает кость через одну секунду? Скорость равна пройденному расстоянию, деленному на прошедшее время. Значит, я могу измерить расстояние, которое она пролетит в течение следующей секунды, и получить среднюю скорость за этот период. Но я хочу узнать точную скорость. Я могу измерить расстояние, пройденное за более краткий промежуток времени, скажем, за половину или четверть секунды. Чем меньше длительность такого интервала, тем точнее я могу вычислить скорость. В конце концов для получения точного значения скорости я буду вынужден взять бесконечно малый временной интервал. Но тогда мне придется вычислять результат деления ноля на ноль.

Придуманное Ньютоном исчисление сделало такой расчет возможным. Он понял, как можно вычислить то значение, к которому скорость стремится по мере уменьшения длительности временного отрезка. Этот революционный новый язык смог выразить картину постоянно изменяющегося мира. Геометрия древних греков была совершенным средством для описания статической, застывшей картины мира.


Математический анализ: осмысление деления ноля на ноль

Рассмотрим автомобиль, начинающий движение из неподвижного состояния. В момент включения секундомера водитель нажимает на педаль газа. Предположим, что, согласно нашим измерениям, в течение t секунд водитель проехал t · t м. С какой скоростью машина будет ехать через 10 секунд? Мы можем получить приблизительное значение скорости, измерив расстояние, пройденное автомобилем между 10-й и 11-й секундами. Средняя скорость за эту секунду равна (11 · 11–10 · 10)/1 = 21 м/с.

Но, взяв среднюю скорость на меньшем временном отрезке, скажем, длительностью 0,5 секунды, мы получим:

(10,5 · 10,5 – 10 · 10)/0,5 = 20,5 м/с.

Это, конечно, чуть медленнее, так как автомобиль разгоняется и во вторую половину секунды, которая прошла между 10-й и 11-й, он в среднем едет быстрее. Возьмем теперь еще меньший промежуток. Давайте еще раз разделим его пополам:

(10,25 · 10,25–10 · 10)/0,25 = 20,25 м/с.

Я надеюсь, что ваш внутренний математик уже заметил закономерность. Если взять временной промежуток длительностью х секунд, то средняя скорость за это время будет равна 20 + x м/с. По мере того как мы рассматриваем все меньшие интервалы, она все более приближается к 20 м/с. Так что, хотя кажется, что определение скорости на 10-й секунде требует вычисления частного 0/0, математический анализ позволяет понять, что это означает.


Великое математическое открытие Ньютона дало нам язык, способный описать мир движущийся. Математика перешла от описания натюрморта к воспроизведению движущегося изображения. В науке произошло нечто подобное случившемуся в этот же период перевороту в искусстве, когда динамическое искусство барокко вырвалось из статического искусства Возрождения.

Вспоминая это время, которое он называл «annus mirabilis»[17]17
  «Год чудес» (лат.).


[Закрыть]
, Ньютон считал его одним из самых продуктивных периодов своей жизни. «Я был в расцвете сил и думал о Математике и Философии больше, чем когда-либо после».

Все, что нас окружает, находится в состоянии постоянного изменения, поэтому неудивительно, что эти математические методы приобрели такое большое влияние. Но, с точки зрения Ньютона, математический анализ был инструментом для личного пользования, позволившим ему получить научные выводы, изложенные в «Началах», великом труде, изданном в 1687 г., в котором он описывал свои идеи о гравитации и законах движения.

Говоря о себе в третьем лице, он объясняет, что его математический анализ был ключом к открытиям, содержащимся в этой книге: «Г-н Ньютон открыл большую часть предложений, изложенных в его “Началах”, при помощи этого нового Анализа». Но никакого описания этого «нового анализа» опубликовано не было. Вместо этого Ньютон частным образом распространял свои идеи среди друзей, но не испытывал никакого желания представить их на суд общественности.

К счастью, теперь этот язык широко доступен, и я лично потратил несколько лет на его изучение, когда учился математике. Но мои попытки познания игральной кости требуют использования математического открытия Ньютона в сочетании с его великим вкладом в физику – знаменитыми законами движения, которыми открываются его «Начала».



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11

Поделиться ссылкой на выделенное