Кристоф Гальфар.

Простая сложная Вселенная



скачать книгу бесплатно

Прыгая вниз головой в горящую печь, вы вспоминаете, что все, чем мы дышим, что видим, трогаем, чувствуем или исследуем, и даже ваше собственное тело состоит из атомов – строительных блоков всего на свете. Они – кирпичики конструктора лего вашей среды обитания, если хотите. Но в отличие от него атомы не имеют прямоугольной формы. В большинстве своем они круглые и состоят из плотного шаровидного ядра, окруженного крошечными вращающимися вокруг электронами. Однако, как и в лего, атомы можно классифицировать по размерам. Самый маленький атом у водорода, второй по величине – у гелия. Соединив эти два элемента вместе, вы получите около 98 % всей известной материи Вселенной. Это, конечно, много, но все-таки меньше, чем в прошлом. Всего 13,8 миллиарда лет назад, как считалось, на эти два элемента приходилось практически 100 % всей известной материи. Азот, углерод, кислород и серебро – примеры современных элементов, не являющихся ни водородом, ни гелием. Должно быть, они появились позже. Каким образом? Сейчас вы это узнаете.

Вы погружаетесь все глубже и глубже внутрь Солнца; температура неуклонно повышается и становится умопомрачительно высокой. В конце пути она достигает 16 миллионов градусов по Цельсию. А может быть, даже больше. Кругом – множество атомов водорода, хотя они оголены окружающей их энергией: их электроны отделились, оставив одни неприкрытые ядра. Они настолько плотно прилегают друг к другу из-за давления, оказываемого звездой на ее собственное сердце, что ядра не могут даже пошевелиться. Вместо этого они вынуждены сливаться друг с другом, образуя ядра большего размера. Вы наблюдаете происходящую прямо на ваших глазах реакцию термоядерного синтеза – создание крупных атомных ядер из более мелких.

Однажды созданные и покинувшие породившую их печь тяжелые ядра объединяются с одинокими, отделившимися от ядер водорода свободными электронами, становясь новыми, более тяжелыми элементами: азотом, углеродом, кислородом, серебром…

Для начала термоядерного синтеза (создания тяжелых ядер из легких) требуется громадное количество энергии, и она обеспечивается сокрушительным действием гравитации Солнца, которое фактически затягивает в себя, одновременно колоссально сжимая, все вокруг. Такая реакция не может происходить естественным образом на поверхности (или внутри) Земли. Наша планета слишком мала и недостаточно большой плотности, так что собственная гравитация не может заставить ядро Земли достигнуть температуры и давления, необходимых для запуска реакции термоядерного синтеза. По определению, это – главное различие между планетой и звездой. Обе – космические объекты округлой формы, но планеты, как правило, имеют каменные ядра небольших размеров, иногда окруженные газом. Звезды же можно рассматривать как огромные установки термоядерного синтеза. Их гравитационная энергия настолько велика, что они вынуждены по своей природе формировать материю в своих центрах. Все тяжелые атомы на Земле, все атомы необходимых для жизни химических элементов, а также атомы вашего тела были когда-то созданы в сердце звезд.

Набирая в легкие воздух, вы вдыхаете их. Трогая свою или чью-то кожу, вы касаетесь звездной пыли. Раньше вы задавались вопросом, почему такие звезды, как Солнце, должны в конце жизни умереть и взорваться, и вот наш ответ: без такого конца кругом были бы лишь водород и гелий. Составляющая нас материя навсегда оказалась бы заперта внутри бессмертных звезд. Земля не родилась бы. И жизнь, такая, какой мы ее знаем, просто не существовала бы.

Взглянув на это таким образом и понимая, что мы не состоим лишь из водорода и гелия, что наши тела, Земля, и все окружающее также содержат углерод, кислород и другие элементы, мы делаем вывод, что наше Солнце – звезда второго или, может, даже третьего поколения. Одно или два поколения звезд должны были взорваться, прежде чем их пыль стала Солнцем, Землей и нами. Так что же вызвало их гибель? Почему звезды обречены завершить свои сияющие жизни эффектным взрывом?

Одним из удивительных свойств реакции ядерного синтеза является огромное количество энергии, необходимой для ее первичного запуска, – вес целой звезды! – и затем она выделяет еще больше энергии.

Причина может показаться удивительной, но, когда наблюдаешь происходящее прямо перед глазами, не остается иного выбора, кроме как принять ее: при слиянии двух атомных ядер в одно большее часть их массы исчезает. Получившееся ядро имеет меньшую массу, чем создавшие его два ядра. Это как если бы смесь килограмма ванильного мороженого с еще одним килограммом того же мороженого давала бы на выходе не два килограмма мороженого, а меньше.

В повседневной жизни такого не бывает. Но в ядерном мире это происходит все время. И, пожалуй, к счастью для нас, масса не теряется. Она превращается в энергию в результате обмена по знаменитому уравнению Эйнштейна E = mc2.[2]2
  Вам, наверное, известно, но позвольте мне уточнить для верности, что в уравнении E = mc2 E обозначает энергию, m – массу, а с – скорость света. Таким образом, единственное в книге уравнение буквально означает, что можно превратить массу в энергию, а энергию – в массу.


[Закрыть]

В обыденной жизни мы больше привыкли к обменным курсам по переводу одной валюты в другую, а не массы в энергию. Таким образом, чтобы понять, что E = mc2 является выгодной сделкой для природы, представьте себе все тот же обменный курс в аэропорту им. Джона Ф. Кеннеди по переводу одного фунта стерлингов (начальная масса) в доллары США (полученная за нее энергия). Обменный курс здесь является с2, где с – скорость света, а с2 – скорость света, помноженная сама на себя. Так что за один фунт вы получите 90 миллионов миллиардов долларов. Позволю себе заметить, прекрасная сделка. По сути, это лучший обменный курс в природе.

Очевидно, что недостающая масса в каждой отдельной термоядерной реакции довольно мала. Но каждую секунду в сердце Солнца сливается так много атомов, что количество выделяемой энергии огромно, и она должна куда-то деваться. Так что она выталкивается в космос, подальше от ядра звезды, всеми возможными способами. В конце концов, энергия термоядерного синтеза уравновешивается гравитацией, возвращающей все выброшенное обратно в ядро, делая размер звезды стабильным. Будь гравитация единственным участником реакции, Солнце начало бы сжиматься.

Ядерный синтез сопровождается выделением огромного количества света и частиц, превращающих все вокруг в сияющий суп из ядер и электронов, называемый плазмой.

Этот выброс света, тепла и энергии и заставляет звезды сиять.

Солнце, будучи звездой, не является большим огненным шаром – для поддержания огня требуется кислород, и хотя Солнце и вырабатывает его наряду с другими тяжелыми элементами, но в безвоздушном космическом пространстве недостаточно свободного кислорода для производства огня любого рода. Чиркнув там спичкой о коробок, вы никогда не зажжете ее. Солнце, как и все звезды на небе, – просто яркий шар сияющей плазмы, горячей смеси электронов, атомов, лишенных части своих электронов (так называемых ионов), и атомов без электронов – оголенных атомных ядер.

До тех пор пока имеется достаточно мелких ядер для сжатия в сердце Солнца, его гравитация и термоядерная энергия будут оставаться в равновесии, и нам крупно повезло жить рядом со звездой, находящейся в таком состоянии.

На самом деле с удачей это не имеет ничего общего.

Если бы наше Солнце не находилось в таком состоянии, нас бы здесь не было.

И как вам теперь известно, Солнце не будет оставаться в состоянии равновесия всегда: в ядре нашей звезды когда-нибудь иссякнет запас атомного топлива. В тот же день прекратятся выбросы энергии из ядра Солнца наружу для уравновешивания гравитацией. Гравитация перевесит, запустив последний этап жизни звезды: Солнце начнет сжиматься и становиться все плотнее, пока реакция ядерного синтеза не запустится снова, но уже не в ядре, а ближе к поверхности. Эта возрожденная реакция синтеза не уравновесит гравитацию, а пересилит ее, и поверхность Солнца будет выталкиваться наружу, заставляя звезду расти. Вы наблюдали этот процесс во время путешествия в будущее. Окончательный выброс энергии станет предвестником виденной вами смерти, рассеяв по космосу все созданные Солнцем на протяжении жизни атомы, одновременно создавая и другие – самые тяжелые, такие как золото. В конце концов эти атомы смешаются с остатками других умирающих звезд поблизости, сформировав огромные облака космической пыли, которая в отдаленном будущем, возможно, создаст другие миры.

Путем оценки количества оставшегося в ядре нашей звезды водорода ученые смогли определить, когда произойдет эта катастрофа, и результат показал, что Солнце взорвется примерно через пять миллиардов лет с сегодняшнего момента, в четверг, плюс-минус три дня.

Глава 4
Наша космическая семья

Теперь ваши знания о Солнце делают вас более осведомленным, чем любого человека, жившего до середины двадцатого века. Весь ежедневно достигающий вас свет исходит от произведенных в самом сердце нашей звезды атомов, от части их массы, трансформировавшейся в энергию. Однако Земля – не единственный небесный объект, получающий выгоду от солнечной энергии.

В мгновение ока ваш разум покидает пузырящуюся раскаленную поверхность Солнца и, словно ястреб, осматривает окрестности. Восемь ярких точек движутся на фоне кажущихся неподвижными далеких звезд. Эти точки – планеты, их заполненные материей сферы слишком малы, чтобы мечтать в один прекрасный день стать звездой. Четыре из них, самые близкие к Солнцу, похожи на крошечные скалистые миры. Четыре дальние в основном состоят из газа. Они крошечные в сравнении с Солнцем, но гиганты рядом с Землей, самой большой из четырех небольших скалистых планет. Хоть все они и родились из того же облака пыли давно погибших звезд – но кроме Земли ни один из этих миров и ни один из сотен их спутников не является потенциальным прибежищем для будущего человечества. Все они связаны силой притяжения Солнца, и все исчезнут вместе с финальным взрывом нашей звезды. Спасение, если таковое существует, должно находиться гораздо дальше.

Осознав срочность поиска, ваш разум устремляется в бескрайнюю даль, чтобы взглянуть на то, что лежит за пределами влияния Солнца. А по пути вы навестите дальних родственников своей планеты, гигантов нашей космической семьи.

Вы уже в три раза дальше от Солнца, чем Земля. Меркурий, Венера, Земля и Марс, четыре небольшие скалистые планеты вблизи Солнца, остались позади. Отсюда наша звезда кажется сияющей точкой размером с полпенни, лежащей на расстоянии вытянутой руки. Если бы Земля располагалась именно тут, то типичный июльский полдень в Великобритании, например, в самый жаркий день в году ощущался бы здесь холоднее, чем самая морозная зима в Антарктиде.[3]3
  В 2013 году один из метеорологических спутников НАСА зарегистрировал в Антарктиде температуру –94,7 °C – самую низкую за все времена на Земле. Там в космосе, где вы находитесь сейчас, было бы гораздо холоднее.


[Закрыть]

Солнечный свет меркнет все больше и больше по мере удаления от нашей звезды.

Вы проноситесь мимо кусков горных пород, оставшихся со времен первых дней формирования нашей планеты. В основном это напоминающие картошку астероиды, образующие вместе то, что среди астрономов принято называть поясом астероидов, – огромное кольцо опоясывающих Солнце обломков, отделяющих четыре маленькие планеты земной группы от мира гигантов. Астероиды сами по себе довольно разрозненны, и, пролетая сквозь их пояс, вы понимаете, что вряд ли есть шанс столкнуться с одним из них. Так что многие созданные человечеством спутники беспрепятственно его пересекали.

Оставив пояс астероидов позади, вы летите мимо Юпитера, Сатурна, Урана и Нептуна, газовых гигантов, огромных планет с относительно небольшими каменными ядрами, глубоко скрытыми под бурными атмосферами огромной величины. Все эти планеты кажутся великолепными благодаря наличию колец, хотя кольца Сатурна значительно превосходят все остальные по размеру и красоте.

Вы облетаете их, рассматривая с уважением, которого достойны гигантские миры, даже если они не подходят для жизни.

За Нептуном, самой дальней планетой, вращающейся вокруг Солнца, вы не ожидаете встретить ничего больше, но обнаруживаете еще один пояс, состоящий из комков грязного льда всех видов и размеров, являющихся опять-таки, по всей вероятности, побочными продуктами рождения нашей Солнечной системы, когда ее нынешние члены сформировались из остаточной пыли давно взорвавшихся звезд. Этот пояс называется поясом Койпера. Отсюда Солнце выглядит размером с булавочную головку, просто одной из звезд. Этих отдаленных областей вряд ли достигает какое-то тепло, но здесь происходит какое-то движение.

Периодически из-за столкновений или других пертурбаций один или несколько этих грязных «снежков» выталкивается со своей тихой далекой орбиты вокруг Солнца. Притягиваясь к нашей звезде, он медленно достигает более теплых областей и начинает испаряться по мере движения навстречу излучению Солнца, оставляя за собой длинные хвосты мелких ледяных скал, сверкающих в темноте; такой астероид становится одним из небесных чудес, называемых кометами. В ноябре 2014 года зонд Philae Европейского космического агентства приземлился на одну из комет для изучения ее поверхности. Доставивший его туда космический аппарат Rosetta в настоящее время отправлен вслед за ним, чтобы наблюдать за превращением внешних слоев кометы в газ по мере приближения к Солнцу…

Бедный Плутон, у которого недавно отобрали статус планеты, отправив его в разряд карликовых планет, теперь также стал частью ледяного пояса, вместе с по крайней мере двумя другими карликами по имени Хаумея и Макемаке. Забавно думать, что Плутон со своим спутником Хароном находится так далеко, а для совершения одного витка вокруг Солнца ему требуется преодолеть такое расстояние по космосу, что прошло меньше одного его собственного года с момента открытия Плутона в качестве планеты до момента потери этого титула спустя семьдесят шесть земных лет. Астрономам действительно потребовалось несколько десятилетий, чтобы увидеть, что его размер на самом деле составляет лишь четверть размера Луны. Самолюбия грязно-коричневого Плутона, мимо которого вы теперь пролетаете, его новая классификация, конечно, нисколько не задела, и вскоре вы оставляете его позади, направляясь все дальше от надежной защиты нашей сияющей звезды.[4]4
  Межпланетная станция НАСА New Horizons достигла Плутона в июле 2015 года, чтобы впервые в истории изучить его в непосредственной близости. Станция обнаружила необычные особенности, увидеть которые никто не ожидал, включая загадочные признаки сравнительно недавней поверхностной активности.


[Закрыть]
По пути встречается все больше карликов и комет и даже до сих пор не открытые замерзшие миры, но ваше внимание быстро целиком переключается на гигантскую сферу, включающую в себя все увиденное до сих пор.

Все рассмотренные вами планеты, карликовые планеты, астероиды и кометы располагаются внутри более-менее плоского диска, в центре которого светит Солнце. Но то, что вы наблюдаете сейчас, совершенно другого свойства. Обширная область из миллиардов, миллиардов и миллиардов потенциальных комет образует огромное сферическое облако, которое действительно кажется занимающим все существующее пространство между Солнцем и царством других звезд. Эта область называется облаком Оорта.

Его размеры поразительны.

Оно определяет границу владычества нашей звезды, включающую в себя всех членов космической семьи под названием Солнечная система.

Покинув ее, вы влетаете в неизведанные территории и нацеливаетесь на то, что считаете ближайшей к нам звездой. Она была открыта в 1915 году. Сто лет назад. Как раз тогда, когда ученые начали понимать нашу Вселенную. Ее имя – Проксима Центавра.

Глава 5
За пределами Солнечной системы

Ваше тело все еще отдыхает на пляже где-то на нашей планете, но разум теперь на таком расстоянии от Земли, которого еще не достигал ни один из созданных человеком объектов.[5]5
  Самым удаленным от Земли объектом, созданным человеком, является космический зонд НАСА «Вояджер-1». Запущенный в 1977 году, он достиг внешней границы Солнечной системы в 2013 году. Он до сих пор продолжает передавать на Землю данные и способен реагировать на новые команды. Запас его батарей рассчитан приблизительно до 2025 года. По состоянию на 2016 год посылаемому с «Вояджера-1» сигналу требуется 18 часов 40 минут, чтобы со скоростью света достигнуть Земли. В будущем это займет больше времени, так как зонд по-прежнему продолжает удаляться от Земли. Обновленные данные о его местонахождении можно найти на www.voyager.jpl.nasa.gov.


[Закрыть]
Как только вы пересекаете край облака Оорта, вы покидаете Солнечную систему, попадая в царство другой звезды. Миновав эту нечеткую линию, осознаваемую вами как граница, вы видите, как некоторые отдаленные от Солнечной системы кометы меняют свои орбиты, переходя с кривой вокруг Солнца на кривую вокруг другой звезды, звезды, к которой мы сейчас движемся, – Проксимы Центавра.

Проксима Центавра принадлежит к семейству звезд, называемых красными карликами. Она намного меньше Солнца (около одной седьмой его размера и массы) и имеет насыщенный красный оттенок, отсюда и название. Красные карлики весьма распространены, ученые даже считают, что они составляют большинство звезд на небе, даже если мы не можем их видеть.

По мере приближения к ней вы непрерывно наблюдаете, как звезда претерпевает сильные изменения в яркости и выбрасывает огромные количества раскаленной материи довольно беспорядочным образом.

А теперь посмотрим, есть ли планеты вокруг злобного красного карлика? Вы не замечаете ни одной.

Какая жалость, отчасти потому, что хотя было бы непросто жить с комфортом на планете, вращающейся вокруг Проксимы, но у выросшей здесь цивилизации появилась бы возможность планировать весьма и весьма долгосрочное будущее. Когда наша звезда, Солнце, взорвется, Проксима не изменится ни на йоту. Насколько нам известно, она будет по-прежнему светить так, как сияет теперь, еще примерно в 300 раз дольше нынешнего возраста Вселенной. Долгое время по любым меркам.

На Проксиме, чей размер гораздо меньше Солнца, образующие ее крошечные атомные ядра сливаются в большие ядра во много-много раз медленнее. Размер, по звездным меркам, имеет значение: чем больше звезда, тем короче ее жизнь… А для вращающихся вокруг них планет решающим является расстояние. Для того чтобы иметь на своей поверхности жидкую воду (и быть в состоянии поддерживать жизнь, в нашем понимании), планета должна быть не слишком холодной и не слишком жаркой. Для этого ей необходимо находиться не слишком близко и не слишком далеко от звезды, вокруг которой она вращается. Зона обитаемости вокруг звезды, позволяющая жидкой воде оставаться на поверхности планеты, называется зоной Златовласки.[6]6
  В российской науке больше употребим термин «обитаемая зона» или «зона жизни». – Прим. пер.


[Закрыть]
А что если вам удастся обнаружить еще один красный карлик с планетой земного типа, вращающейся как раз на нужной дистанции? Тогда она могла бы походить на наш нежно любимый мир и существовать всегда…

Чувствуя некоторую вину за допущение подобной мысли, вы оборачиваетесь, чтобы взглянуть на родную Солнечную систему, свой мир, ожидая, что Солнце затмит все остальные яркие точки в небе, но это совершенно не соответствует истине, и колоссальность космических расстояний неожиданно ранит вас в самое сердце.

Если бы вы были не чистым разумом, а настоящим космическим путешественником, сколько времени, интересно, потребовалось бы, чтобы отправить отсюда весточку домой?

Если бы вы захватили с собой межзвездный мобильный телефон, то могли бы попытаться звонить друзьям с каждой из остановок, чтобы поделиться с ними своими открытиями. Мобильные телефоны превращают голос в передаваемый со скоростью света сигнал, что делает земную связь по ощущениям мгновенной. Однако в космическом пространстве расстояния обычно слишком велики, и ничто не кажется больше мгновенным. От Луны до Земли свет проходит приблизительно за одну секунду и еще столько же в обратном направлении. Так что, если бы вы, находясь там, спросили бы друга на Земле, видит ли он вас в бинокль, его ответ вернулся бы к вам через две секунды.

На Солнце дела обстояли бы хуже. Расстояние между Землей и Солнцем свет преодолевает уже за восемь минут и двадцать секунд. Общаться становится сложнее, так как ответа на вопрос придется ждать больше шестнадцати минут. Но Солнце, по космическим меркам, находится совсем рядом. Звонок оттуда, где вы находитесь, недалеко от Проксимы Центавра, придет на телефон на Земле приблизительно через четыре года и два месяца. Так что любой ответ на ваш вопрос достигнет вас не раньше чем через восемь лет и четыре месяца.

Вы добрались лишь до второй, ближайшей к Земле после Солнца звезды, но ощущаете себя так далеко от дома, что начинаете искать какой-нибудь ориентир, чтобы не заблудиться.

Вспомнив про прекрасный Млечный Путь, увиденный с пляжа тропического острова, вы оглядываетесь вокруг в поисках облачно-белой полоски света. К вашему удивлению, вы тут же обнаруживаете, что теперь он больше напоминает не широкую прямую полосу, а наклонное кольцо, и некоторые части его ярче других, а вы находитесь где-то внутри него. И понимаете, что если Млечный Путь выглядел с Земли как полоса, то это происходило потому, что его бо?льшую часть скрывала сама Земля под вашими ногами.

Недолго думая, так и не обнаружив никаких планет у Проксимы Центавра, вы держите курс прямо на самую яркую часть Млечного Пути.

Сами не зная того, в настоящее время вы движетесь к центру скопления около 300 миллиардов звезд. К скоплению, называемому галактика.

Глава 6
Космический монстр

Если задуматься, то в центре скопления 300 миллиардов звезд должно оказаться что-то необычное. Возьмем Землю. Ее центр является самым плотным, горячим, агрессивным местом (в земных пределах). Возьмем Солнечную систему. В ее центре находится Солнце – самое плотное, горячее, агрессивное место (в пределах Солнечной системы). Это, может, ничего и не доказывает, но явно намекает, что, вероятно, и в центре Галактики существует что-то такое же большое. Что-то действительно очень большое.

Быстрее мысли вы пролетаете несколько десятков миллионов звезд. Некоторые из них гораздо больше Солнца, обреченные жить еще значительно меньше, а другие – крошечные, готовые излучать свет невообразимо долгое время. Вы пролетаете сквозь области звездообразования, облака пыли из остатков сотен взорвавшихся звезд и звездные кладбища, ждущие момента слияния, чтобы стать областями звездообразования. А теперь здесь еще и вы. Вблизи центра Галактики, каким бы он ни оказался. И тут вы внезапно останавливаетесь.

Прямо перед вами еще одно кольцо. Вращающееся красочное кольцо из рассеянной материи. Присмотревшись, вы замечаете, что оно образовано из газа и миллиардов осколков и комет, движущихся вокруг источника яркого, мощного света, напоминающего пухлый пончик.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8