Коллектив авторов.

Михаил Козловский: ?негелі ?мір. Вып. 30



скачать книгу бесплатно

В 1955 г. окончила химический факультет МГУ В том же году по распределению поступила на работу в Институт металлургии АН СССР в качестве старшего научного сотрудника.

С 1974 г. на работала в Отделе Металлургии ВИНИТИ на должности старшего научного сотрудника. С 1994 г. до дня смерти – заведующим сектором.

Татьяна Михайловна – кандидат наук, имеет более 30 печатных работ. Была награждена многочисленными грамотами, медалью «Ветеран труда».

Скоропостижно скончалась от инфаркта 18 июня 2009 г.

Козловский Михаил Николаевич

Родился 15 декабря 1969 г. в Москве. Закончил радио-технический факультет МИРЭА. Сейчас работает в коммерческой производственной фирме.

Уважаемый Зулхаир!

Письмо Ваше получил.

К сожалению, бабушка развелась с дедом еще в середине 40-х, и г?ворить о нем не очень любила.

Мама, конечно, была более разговорчива, но такого диалога как:

– мама, расскажи мне о дедушке.

– ладно, садись, Мишенька, слушай.

у нас, пожалуй, ни разу не 6ыло… Тема дедушки чаще всего всплывала в разговорах о путешествиях и неведомых мне краях – мама много где побывала именно с ним.

Увы, составшъ из этих обрывочных воспоминяний связный, а, главное, интересный кому-либо рассказ я не берусь.

Что касается фотографий.

У меня на руках Большой и абсолютно бессистемный архив. Дело осложняется тем, что все фотографии не подписаны, а подписанные вклеены в альбом. Однако я уже нашел несколько довольно интересных снимков.

11.10.2013

Уважаемый Зулхаир!

С интересом прочел присланные воспоминания. Спасибо. Знаете, я даже вспомнил ту маленькую книжечку, о которой пишет Аида Мусина. Помнится, ребенком я втихаря залез в запретное отделение шкафа, в черный портфель (как я уже знал) моего покойного деда и нашел там совершенно непонятную записную книжку… Т.к. там были не телефоны и не записки, я её с чистым сердцем …гм… изрисовал.

14.10.2013

Здравствуйте, Зулхаир!

Пока перерыл 2 дедушкиных личных альбома, его портфель и коробку разрозненных фото. Огромное количество личных писем (переписка с мамой), газетных вырезок с упоминанием дедушки и различных документов, вплоть до институтского диплома (весьма удивительная бумага размером примерно 40х40 с фотографией). Увы, Большинство вырезок из Алма-Атинских газет с официальной информацией. Думаю, это у вас есть и без меня…

Если что-то из этого может представлять интерес, напишите.

К сожалению, 99 % фотографий в этом архиве – о6ычные портретные.

14.10.2013

Здравствуйте, уважаемый Зулхаир!

Дедушка успел написать мне десяток таких писем, но встречались мы всего один раз.

Если кто нас и сфотографировал, в архиве таких фотографий не осталось. Самой встречи я не помню, что простительно – на момент смерти деда мне было всего 2 года…

16.10.2013

Михаил прислал фотографии из альбома своей мамы Татьяны Михайловны с ее комментариями (на некоторых фото они представлены).

ИЗБРАННЫЕ ТРУДЫ И ВЫСТУПЛЕНИЯ АКАДЕМИКА М.Т. КОЗЛОВСКОГО

ЦЕМЕНТАЦИЯ КАК МЕТОД РАЗДЕЛЕНИЯ МЕТАЛЛОВ

Явление цементации. – Т.е. вытеснение одних металлов другими, широко используется в гидроэлектрометаллургии: для выделения малых количеств меди при гидрометаллургической переработке бедных руд, при очистке никелевых электролитов, для выделения кадмия при его производстве, для выделения некоторых редких металлов и т. д.

Этот метод может быть использован и в аналитической химии. Так, цементацию применяют для выделения из разбавленных растворов таких металлов, как индий, ртуть, сурьма, таллий и др. При помощи цементации можно также производить освобождение раствора от ряда металлов, препятствующих проведению той или другой реакции или определению того или иного элемента. Наконец, косвенным образом цементация может быть использована для определения некоторых металлов в смеси их с окислами, например, для определения металлического железа в смеси с его закисью и окисью. Важное значение метода цементации для аналитической химии подчеркнул Н.А. Тананаев в своем докладе на I Всесоюзной конференции по аналитической химии [1].

Первые теоретические обобщения, касающиеся цементации металлов, были сделаны более 150 лет назад, когда Севергиным [3], Фишером [2] и Хотинским [3] была установлена закономерность в вытеснении металлов, выражающаяся известным «рядом напряжений» и нашедшая дальнейшее развитие в работах Н.Н. Бекетова [4]. Новое истолкование «ряд напряжений» получил после введения понятия о нормальном потенциале и после того как была установлена зависимость потенциала от природы металла и концентрации (активности) его ионов, обобщенная в виде формулы Нернста. Однако дальнейшие опыты показали, что не всегда ход процесса цементации может 6ыть объяснен при помощи формулы Нернста. Так, по данным Н.А. Тананаева [1], бериллий, алюминий, железо и никель не вытесняют из растворов нитратов даже таких электроположительных металлов, как серебро, ртуть и медь. Эта аномалия может быть объяснена пассивацией цементирующего металла, прекращающей процесс анодного его растворения. В качестве другого примера несоответствия хода процесса ряду напряжений может служить реакция восстановления трехвалентного железа металлическим цинком. При этой реакции происходит выделение в осадок гидрозакиси железа, а не металлического железа, как это можно было бы ожидать на основании величин нормальных потенциалов. Это обусловлено снижением кислотности раствора в связи с разрядом водородных ионов.

Уже эти два примера указывают, что процессы цементации в достаточной степени сложны. Необходимо экспериментальное изучение этих процессов, так как применение одной лишь формулы Нернста не дает еще возможности сделать заключение, как будет проходить вытеснение одного металла другим. Однако количество исследований в этой области невелико [5-9]. Как правило, все эти исследования выполнялись не с целью применения полученных данных в аналитической химии.

Основные вопросы, интересующие аналитика, – это выяснение факторов, влияющих на полноту цементации (что тесно связано с вопросом о скорости цементации), и влияния на ход процесса других катионов, находящихся в растворе. Сравнительно меньшее значение для аналитика имеют вопросы полезного использования цементирующего металла.

Авторами были проведены исследования по цементации некоторых цветных металлов (висмута, сурьмы) на кадмии, железе и свинце, а затем других металлов на амальгамах натрия и цинка. Кадмий и железо 6ыли выбраны как два металла, обладающие почти одинаковым нормальным потенциалом, но сильно отличающиеся по величине перенапряжения для выделения на них водорода. Свинец взят как металл более положительный и обладающий притом 6ольшим перенапряжением для водорода. Опыты проводились с пластинками металла при температуре кипения раствора в солянокислой или серно-солянокислой среде.

При цементации висмута на этих металлах были замечены некоторые закономерности. Оказалось, что при больших концентрациях цементируемого металла скорость цементации зависит от потенциала цементирующего металла. Этого и можно было ожидать, поскольку количество отлагающегося металла должно быть пропорционально силе тока местных элементов, а последняя при прочих равных условиях определяется разностью потенциалов цементируемого и цементирующего металлов. Однако при малых количествах цементируемого металла скорость процесса цементации оказывается уже не зависящей от потенциала металла, примененного для цементации. Это может быть объяснено тем, что в данном случае скорость процесса определяется уже скоростью диффузии разряжающихся ионов. – Т.е. наступает явление, аналогичное явлению предельного тока в полярографии (рисунки 1 и 2).

Величина же перенапряжения для выделения водорода резко сказывается на величине полезного использования металла для процесса цементации. Так, при цементации 10,6 мг висмута на цементацию металла было израсходовано 53 % кадмия, а на выделение водорода (а также на восстановление незначительных количеств растворенного 02) – 47 %, в то время как для железа – 12 и 88 %, соответственно. Полезное использование свинца достигало 95 %.


Рисунок 1. Цементация 6ольших количеств висмута. 1 – цементация кадмием, 2 – железом, 3 – свинцом


Рисунок 2. Цементация малых количеств висмута. 1 – цементация кадмием, 2 – железом, 3 – свинцом


В ряде опытов приходилось набдюдатъ, что при выделении некоторого количества цементируемого металла скорость процесса цементации начинала возрастать. Это может быть объяснено увеличением катодной поверхности: при небольшой поверхности микрокатодных участков процесс лимитируется скоростью диффузии разряжающихся ионов к этим участкам. При отложении же цементируемого металла поверхность катодных участков возрастает и соот– ветственно увеличивается число ионов, диффундирующих к катоду в единицу времени. Отметим, что непрерывное изменение величины как катодной, так и анодной поверхности в процессе цементации делает недостоверными практикуемые некоторыми авторами подсчеты констант скорости реакции цементации.

Как уже отмечалось, с точки зрения аналитической химии, наиболее важным является вопрос о количественном выделении металла из раствора путем цементации. Опыты показали, что особенно трудно выделить последние следы металла. По мере уменьшения содержания металла в растворе потенциал, необходимый для его выделения, делается все более отрицательным, вследствие чего металлу стано– вится все труднее конкурировать с водородом. Например, при снижении содержания висмута с 10,6 до 1,06 мг на 100 мл раствора полезное использование кадмия снижается с 53 до 13 %, а железа – с 12 до 1,4 %, остальное же количество цементирующих металлов расходуется на выделение водорода.

Для улучшения процесса цементации малых количеств металла было решено испытать добавку к цементируемому раствору солей других металлов. В качестве такой добавки применялись соли свинца. Авторы рассчитывали на положительное его влияние из таких соображений: 1) выделившийся на цементирующем металле свинец увеличивает поверхность катодных участков, 2) ввиду высокого перенапряжения водорода на свинце конкурирующий процесс разряда ионов водорода будет задержан.

Опыты показали справедливость высказанных предположений. Если при наличии в растворе 1 мг висмута за 25 мин на кадмии удавалось выделить всего лишь 0,5 мг висмута, то после добавления к раствору 100 мг свинца количество выделенного цементацией висмута за тот же срок составляло 98,2-99,0 %. Даже при количестве 0,11 мг висмута процент выделенного металла достигал 90 %. При этом расход кадмия на выделение водорода резко снижался; на выделение водорода кадмий практически совсем не расходовался.

Аналогичные опыты были проведены с сурьмой, при цементации которой железом к раствору добавляли соли меди. Оказалось, что и в этом случае добавление ионов друг?го металла повышало количество выделенной сурьмы, однако в этом случае положительное влияние добавки меди в основном связано с увеличением катодной поверхности, а также с тем, что медь, образуя химическое соединение с сурьмой, несколько сдвигает в сторону положительных значений потенциал разряда ионов сурьмы. Что же касается выделения ионов водорода, то, поскольку медь обладает малым перенапряжением для водорода, последний при добавлении малых количеств меди выделяется в Больших количествах из-за увеличения катодной поверхности. При добавлении 6ольших количеств меди выделение водорода замедляется ввиду уменьшения поверхности анодных участков.

Рассмотрим опыты по цементации при помощи амальгам. Цементация амальгамами нас интересовала в силу целого ряда соображений: 1) на амальгамах велико перенапряжение для выделения водорода, поэтому на амальгамах не так сильно будет сказываться конкурирующий процесс выделения водорода; 2) при цементации амальгамами выделенный металл растворяется в ртути, следовательно, его легко можно отделить от исследуемого раствора (не прибегая к фильтрованию); 3) полученную амальгаму можно затем исследовать полярографически (по методу А.Г. Стромберга [9]), электрохимически, подвергая анодному окислению по нашему методу, или титровать ее по методу В.А. Циммергакла и Р.С. Хаймовича [10]; 4) при применении амальгамы для цементации можно использовать такой металл, как натрий, который не мешает проведению большинства реакций и одновременно характеризуется большой восстановительной способностью. Кроме того, применение амальгам для цементации металлов представляет определенный интерес и с методологической точки зрения, так как в этом случае не происходит изменения величины катодной и анодной поверхностей.

Нами изучался процесс цементации некоторых металлов при помощи амальгам натрия и цинка. В качестве объектов для цементации первоначально был выбран кадмий как в отдельности, так и в присутствии следующих метяллов: железа (металла, обладающего 6лизким к кадмию нормальным потенциалом, но отличающимся от кадмия по растворимости в ртути и по величине перенапряжения для водорода), никеля (металла, Близкого по свойствам к железу, но обладающего более положительным потенциалом), меди (металла более электроположительного, чем водород) и цинка (одного из наиболее электроотрицательных металлов). Были проведены также опыты по цементации свинца и олова из щелочных растворов амальгамой натрия.

Опыты проводились при температуре 20° в стакане емкостью 100 мл при постоянном числе оборотов мешалки. Установлено, что при цементации кадмия амальгамой натрия из нейтральных растворов не наблюдается полного выделения кадмия вследствие выпадения части кадмия в осадок в виде гидроокиси. При слабом подкислении раствора количество кадмия, переходящего в амальгаму, возрастает, а при более сильном подкислении уменьшается в связи с конкурирующим влиянием ионов водорода. Кроме того, при этих опытах было установлено конкурирующее влияние растворенного кислорода, действие которого приводило к переходу уже выцементированного кадмия из амальгамы снова в раствор. При цементации кадмия в присутствии цинка из нейтральных растворов наблюдалась 100 %-ная цементация кадмия, так как в этом случае гидроксильные ионы связывались не кадмием, а цинком, гидроокись которого менее растворима, чем гидроокись кадмия.

При цементации кадмия в присутствии никеля и железа оказалось, что происходит одновременная цементация обоих металлов, однако, в первую очередь цементируется преимущественно кадмий, а не никель, хотя нормальный потенциал последнего и более положителен, нежели кадмия. Это объясняется тем, что образование амальгамы никеля (равно как и железа) требует затраты значительного количества энергии. Оба металла цементируются не количественно: из нейтральных растворов – вследствие образования осадка гидроокисей, из кислых же растворов – вследствие конкурирующего процесса выделения водорода, который в этом случае проходит довольно интенсивно. Что же касается железа, то оно переходит в амальгаму в еще меньшем количестве, чем никель, так как потенциал железа отрицательнее потенциала никеля. При цементации кадмия в присутствии железа из нейтральных растворов наблюдается количественное выделение кадмия: ионы гидроксила так же, как и в случае цинка, связывают уже не кадмий, а железо, гидроокись которого менее растворима, чем гидроокись кадмия (произведения растворимости для гидроокисей кадмия, железа двухвалентного и никеля соответственно равны 1,2?10-14, 4,8?10-16 и 2?10-14).

При цементации кадмия в присутствии меди из слабокислых растворов (0,1 н.) оба металла количественно переходят в амальгаму, при цементации же из нейтральных растворов как медь, так и кадмий оказываются частично в осадке гидроокисей.

Опыты по цементации кадмия в присутствии других металлов показывают, что лимитирующей стадией процесса является катодный процесс, который определяется скоростью диффузии ионов к амальгаме. В самом деле, при наличии второго металла, на выделение которого затрачивается натрий, первый металл выделяется в меньшем количестве, чем в отсутствии второго металла.

При использовании вместо амальгамы натрия амальгамы цинка оказалось, что цементация кадмия при помощи цинка (опыты проводились в кислых растворах) проходит даже быстрее, чем при помощи амальгамы натрия; это объясняется тем, что цинк не расходуется на выделение водорода. Что же касается никеля и железа, то они амальгамой цинка цементируются в крайне ничтожной степени.

Далее 6ыли проведены опыты по цементации свинца и олова амальгамой натрия в щелочных растворах. Оказалось, что свинец количественно может быть переведен в амальгаму при одновременном выделении водорода. Несмотря на проведение процесса в щелочной среде, на выделение водорода расходовалось до 80 % натрия, имеющегося в амальгаме. При проведении опытов с амальгамами разных концентраций оказалось, что более концентрированные амальгамы дают худшие результаты, чем разбавленные; в этом случае при применении более концентрированной амальгамы (1 %-ной вместо 0,5 %-ной) наблюдается затвердевание первоначально жидкой амальгамы, сопровождающееся выделением прекрасно образованных кристаллов, имеющих форму куба и представляющих собой тройную систему из ртути, свинца и натрия. Ориентировочный анализ показал, что содержание ртути в этих кристаллах Близко к 99 %, натрий же и свинец находятся в молекулярных соотношениях 20:1 (0,27 % свинца, 0,55 % натрия).

Что же касается цементации олова амальгамой натрия, то проведенные при доступе воздуха опыты показали, что цементация проходит совсем неудовлетворительно: в амальгаму удается перевести лишь незначительное количество олова. Это легко объясняется тем, что кислород воздуха окисляет станнит и натрий расходуется в основном на обратный процесс восстановления станната в станнит.

Выводы

1. При процессах цементации следует учитывать возможность протекания следующих процессов, конкурирующих с процессом выделения металла: выделение водорода и восстановление кислорода воздуха.

2. Как тот, так и другой процесс приводят к замедлению цементации металла, причем выделение водорода может привести к выпадению осадка гидроокиси металлов.

3. При цементации смеси нескольких металлов ход процесса может определяться значениями перенапряжения для водорода на этих металлах, а также величинами произведения растворимости их гидроокисей.

4. При цементации металлов необходимо учитывать возможность образования интерметаллических соединений, которые могут оказывать влияние на ход цементации.

5. Процесс цементации металлов амальгамами нуждается в дальнейшем изучении и может найти разнообразные аналитические применения.

Литература

1. Тананаев Н.А. // Тр. конференции по аналитической химии, 2. – М., 1948. – 297 с.

2. Fischer N.W. //Pogg. Ann., 1826. -6. – P.43; 1826. – 8. – P.4888; 1827. – 9. – P.255; 1827. – 10. – P. 603.

3. Баталин А.Х. // Вестн. Чкаловского отделения ВХО им. Д.И. Менделеева. – 1946. – 3.

4. Бекетов Н.Н. Исследования над явлениями вытеснения одних элементов другими. – Харьков, 1865.

5. Изгарышев Н.А., Миркин И.А. // Журн. общ.хим. – 1934. – 4. – С.7.

6. Шахов А.С. // Журн. Физ. Хим. – 1936. – 4. – С. 525.

7. Дроздов Б.В. // Журн. Прикл. Хим. – 1949. – 22. – С. 483.

8. Плаксин И.Н., Суворовская Н.А. // Цветные металлы. – 1948. – 3. – С. 37.

9. Стромберг А.Г. Рефераты докладов на совещании по электро– химическим методам анализа. – М., 1950.

10. Цыммергакл В.А., Хаймович Р.С. // Завод, лаб. – 1948. – 14. – С. 1289.

Доклад на конференции по аналитической химии в Москве в 1950 г. Труды по аналитической химии АН СССР. – Т. IV (VII). – М, 1952. – 263 с.
О ПОДГОТОВКЕ КАДРОВ ХИМИКОВ-АНАЛИТИКОВ ДЛЯ ПРОМЫШЛЕННОСТИ

Нет необходимости говорить о том значении, которое в современном производстве имеет правильная и четкая постановка работы заводских лабораторий. Точные методы анализа и усовершенствованная аппаратура представляют собой основные звенья, обеспечивающие высокое качество работы аналитических лабораторий. Не меньшее значение имеют и вопросы организации труда в заводских лабораториях. Все перечисленные вопросы регулярно освещались и освещаются на страницах журнала «Заводская лаборатория». Однако один основной вопрос, который имеет исключительно серьезное значение в работе заводских лабораторий, – вопрос о подготовке кадров аналитиков – до сих пор совершенно не затрагивался в журнале.

Между тем, в системе вузовского образования аналитическая химия в настоящее время занимает крайне скромное место. Если 30 лет назад на изучение одного лишь качественного анализа студент затрачивал свыше 500 час., то теперь по университетским планам на всю аналитическую химию (качественный и количественный анализ) отводится всего лишь 390 час. Этим ограничивается аналитическая подготовка химиков всех специальностей, кроме химиков-аналитиков, имеющих еще спецкурсы в последнем году обучения.

Нормально ли такое положение? На этот вопрос, прежде всего, должны ответить производственники.

Министерством высшего образования созывались методические совещания по вопросу о преподавании аналитической химии. Последнее такое совещание проходило в июне 1950 г. Однако на этих совещаниях, как правило, не присутствовяли представители зяводских и других производственных лабораторий. В числе 232 делегатов совещания 6ыло всего 6 инженеров, и единственным производственником, выступавшим на данном совещании, был старший научный сотрудник ВИМС В. Г. Сочеванов.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6