Геннадий Распопов.

Эко сад и огород. Книга для тех, кто хочет сохранить здоровье



скачать книгу бесплатно

Почва как среда обитания

Повторюсь, главный ресурс почвы, определяющий плодородие, – это не только гумус и доступные NPK, а биоразнообразие живых существ, ее населяющих. Чем выше биоразнообразие почвенной биоты, тем лучше формируются микрогранулы почвы, строятся микрогалереи, повышается пористость, увеличивается в сотни раз площадь внутренней поверхности почвенных частиц и, естественно, площадь обитания микроорганизмов. Все это формирует разные экологические ниши для микробов и, как следствие, контролирует болезни и вредителей.

Поговорим на эту тему подробнее. Почвы на наших грядках отличаются по составу (глина, песок), по размерам частиц, по степени выветривания, по слоям (профилю) – чем выше слой, тем больше органики и кислорода. Это надо знать садоводу, чтобы понимать, как управлять процессами в почве.

Ведь структура почвы, размер частиц, степень разложения органики определяют размер почвенных стабильных агрегатов, размер пор и, как следствие, площадь пленок воды, где сосредоточена жизнь микробов и корней.

Почва в процессе эксплуатации всегда меняется. Качество этих изменений зависит от садовода. Остановимся на этом чуть подробнее. Бактерии и грибы всегда прячутся от почвенных хищников в мелких порах и в глубине гранул. Как только мы лопатой нарушили их убежища, все, что оказалось вне убежищ, тут же съедается ползающими коллемболами, амебами и другими хищниками. Бактерии и грибы поэтому обычно живут оседло, колониями. Прикрепляют себя к глинистым и перегнойным частицам жгутиками, полисахаридными смолами, грибницей. Чем больше глинистых частиц, тем тоньше поры, куда нет ходу хищникам. И наоборот, слишком плотная глина непроходима даже для мелких бактерий, поэтому органика в ней не разлагается годами и недоступна корням.

Но вот на грядки приходят черви, клещи, многоножки, нематоды, они прокладывают норки, заглатывают органику вместе с глиной и песком, в их полостях работают более быстрые микроорганизмы, переваривая и разлагая с огромной скоростью почвенные частицы и попутно переваривая микроорганизмы, выделяя копролиты в почвенных ходах, куда устремляются воздух, влага и корни.

Управлять этими процессами можно. Не следует переворачивать почву «с ног на голову», надо просто регулярно насыпать сверху органику с правильным соотношением азота к углероду и увлажнять почву.

Если садовод научен смотреть на органику как на питание (NPK) для корней, толку бывает мало. Такой садовод свежий навоз закапывает в грядки, делает слой органики в «теплых грядках» иногда метровой толщины, под растение насыпает толстый слой свежих сорняков, которые после дождя гниют. Рано или поздно и эта органика принесет пользу, но вначале она нарушит и структуру почвы, и жизнь биоты, особенно быстро уничтожив почвенных хищников.

Поэтому важно знать, в каких условиях быстрее всего заводятся почвенные мелкие животные, и вносить именно такую рыхлую органику, с соотношением азотистых и углеродистых отходов 1/30, с целью создания условий жизни мелким хищникам.

А они обязательно и накормят, и защитят ваши растения. Крики соседей, что в рыхлой органике много всяких вредных жучков, червячков и улиток, которые съедят корни, и надо их всех убить и закопать, – это вредный миф.

Главное – постоянство. Понемногу, в течение всего года, много лет подряд мульчируйте землю тем, что можно найти рядом или недорого привезти, при этом внимательно коррегируя азот или углерод. В любых постоянных условиях наладится свой биоценоз, лишь бы была энергия доступного углерода для бактерий и грибов.

Надо помнить всегда следующее: чем больше корней культурных растений и дикоросов пронизывает почву, чем больше органики корневых выделений и отмерших корней туда поступает, тем быстрее и в большем объеме нарастает почвенная биота.

Микробиота научится вырабатывать необходимые ферменты для разложения имеющихся энергетических продуктов, прежде всего целлюлозу, секретами привлечет азотофиксаторов, которые добавят в пищевые цепочки почвы соли азота.

Чем лучше будет соотношение глины, песка и гумуса, чем меньше поры, тем больше почвенных бактерий спрячутся от хищников, быстрее и лучше переработают вносимую органику, накормят растения. А если вы мульчей сохраните влагу и поры для воздуха – то и для корней, и для биоты наступят райские условия жизни, сформируется стабильная экосистема.

Попытаемся поразмышлять дальше, какие превращения происходят в почве, если сложилась стабильная почвенная экосистема. Вспомним, что такое органическое вещество почвы.

Органическое вещество почвы состоит из углеродсодержащих соединений, образующихся в результате биологических процессов. Стоит помнить о двух главных направлениях: разложение опада и разложение почвенных организмов, которые размножились на секретах корней и опаде корней. Поэтому органика почвы – это всегда разная степень разложения клеточной структуры растений и животных. Медленней всего разлагаются лигнин и хитин.

Но кроме мертвой органики в почве всегда есть живые корни, живые микроорганизмы и крупные почвенные животные. Чем их больше, тем почвы обычно плодородней и лучше противостоят стрессам.

Растения получают углерод только из атмосферы, эволюционно они не могут усваивать огромные запасы углерода в виде СО2 и глюкозы из почвы. Спекуляции на этот счет наукой не подтверждены. Опыты с СО2 и корнями в экспериментах в реальной почве не играют никакой важной роли в жизни растений. Есть много промышленных теплиц, где с поливной водой вносят в почву СО2 в огромной концентрации, корни его не всасывают, просто он медленно поднимается вверх и всасывается листьями через устьица, повышая фотосинтез и урожай. Урожай в теплицах при прочих равных условиях всегда зависит от содержания СО2 в воздухе и не зависит от его содержания в почве.

В теплицах, где не вносят дополнительный СО2, в летний солнечный день листья быстро его «выедают», содержание падает ниже 0,01 % и фотосинтез прекращается, а в почве днем концентрация СО2 очень высока из-за разложения органики, но корни ее почти не усваивают. В растения углерод поступает всегда из воздуха, в листьях (и в корнях) синтезируются более сложные органические соединения. Эти соединения поступают в почву и разлагаются гетеротрофными микроорганизмами.

Получается, сколько органики растение синтезирует и отдает почве, столько и поступает энергии для жизни биоты. Но садовод может внести в почву дополнительную органику, чем резко ускорит процессы почвообразования, или неразумно внести минералку и пестициды, тем самым замедлит эти процессы.

Правильнее именно фотосинтез, точнее, производство растением органических веществ рассматривать как основной процесс, а далее смотреть, что улучшает ситуацию. Например, продолжительность и интенсивность света, содержание СО2 в воздухе, точнее, поднос ветерком к листьям СО2, его содержание в микрозонах устьиц. Наличие и доступность питательных веществ в почве, а также влаги и тепла. Наличие симбионтной биоты в почве со своими нужными растениям гормонами и витаминами.

Приведу примеры, чтобы оттенить важную мысль. Внесите в виде мульчи на одну грядку траву люцерны или льна, на другую – траву лебеды. Стебель люцерны очень прочный. Он состоит из сложных прочных молекул лигнина, при этом вместе с целлюлозой этот лигнин включен в прочнейшие стенки клеток растения. Разорвать эти связи способны ферменты редких грибов. Поэтому гумус из этого лигнина сохраняется в почве сотни лет и определяет ее пористость.

Лебеда состоит из простых белков, сахаров и небольшого количества целлюлозы. Разлагается очень быстро, почти не оставляя гумуса, сразу включаясь в пищевые цепочки микроорганизмов, поставляет растениям много азота. Микроорганизмы так же быстро или умирают, или поедаются хищниками и кормят азотом растения, а вот гумуса после себя почти не оставляют, потому что они не содержат структурно сложных молекул, таких как лигнин и целлюлоза. На первой грядке растения вырастут слабее, а гумуса станет больше, на второй растения будут жировать, а содержание гумуса падать.

Лигнин появился в растениях в процессе эволюции не сразу, а только тогда, когда в них появились сосуды. В отличие от целлюлозы, которая состоит из линейных цепочек сахаров, лигнин состоит из молекул с трехмерной закольцованной структурой.

Грибы (бактерии) своими ферментами легко разрушают целлюлозу и черпают из нее энергию, для разложения же лигнина ферментов и энергии надо затратить больше, а так как в лигнине практически нет азота и других дефицитных элементов, то ради одной энергии углерода биота с ним «не связывается».

Сосудистые растения приспособились утилизировать лигнин, с помощью него укрепляя стенку проводящих сосудов. Как только в природе появился опад сосудистых растений, то есть образовалось много лигнина, появились и грибы базидиомицеты, которые его переводят в гумус.

В почве гумус включился в дальнейшие цепочки почвообразования и сыграл ведущую роль для «строительства домов и городов» для почвенной биоты, определяя структуру почвы и ее способность делать доступными для корней дефицитные минералы почвы.

Почитаем, что пишут ученые, как образовался гумус черноземных степей:

«Максимальное накопление гумуса в мощных тучных черноземах связано с разложением большого количества корневых остатков в условиях весеннего максимума влаги при ограниченном сквозном промачивании гумусового горизонта.

Сухой летний период играет важную роль в образовании и накоплении гумуса черноземов по следующей причине: недостаток влаги в почве к концу лета подавляет жизнедеятельность микроорганизмов, разлагающих и минерализующих растительные остатки, но в это время продолжают интенсивно работать ферменты, играющие существенную роль в процессах собственно гумификации.

Личный опыт

В последние годы я все свои земли стал опрыскивать гуматами весной и осенью («Агровит-Кор»), их еще называют катализаторами почвообразования, поэтому за лето у меня гумуса разрушается менее 1,5 % и прибывает к осени выше 2,5 %. Почва становится темнее и структурнее, в сентябре – теплой и мягкой как перина.

В течение вегетационного периода содержание гумуса в типичном черноземе под целинной степью закономерно изменяется, уменьшаясь приблизительно к концу июня и снова повышаясь в сентябре. Гумус обильно снабжает элементами минерального питания интенсивно вегетирующую в это время растительность.

В конце же лета, она как бы отдает почве новое синтезированное органическое вещество взамен старого, израсходованного почвой на минерализацию в период бурного роста вегетативной массы.

В самом верхнем наиболее корнеобитаемом слое чернозема (0–5 см) сезонные изменения содержания гумуса достигают 2 %: содержание гумуса сначала уменьшается с 10–11 до 8–9 %, а к осени более или менее восстанавливается до первоначального уровня. Потеря 1–2 % гумуса – это 25–30 т/га.

Невозможно предположить, что такое количество гумуса за 2–3 месяца может восстановить опад корней. Самих корней в верхнем 20-сантиметровом слое чернозема содержится 18 т/га. Откуда же берется органический материал – источник пополнения гумуса в черноземе к концу вегетационного периода?

Этим источником являются не только опад корней и не только надземная масса степных трав после ее отмирания, но и прижизненные корневые выделения, которые тоже подчинены сезонной ритмике и достаточно обильны в целинно-степных черноземах…»

Я хочу подчеркнуть, что даже в степях, в дикой природе гумус прирастает очень медленно, тысячи лет. А вот падает в периоде вегетации растений летом на 2 %. Посадка сидератов не меняет скорости накопления гумуса. Да, сидераты осенью дадут прибавку 1–2 % гумуса, но ведь за лето они и съедят эти 1–2 %. Без внесения щепы из сладких веточек или другой дополнительной органики нам не обойтись.

Теперь вам стала понятна роль гумуса в эволюции растений? Нет? Поговорим еще.

В свежем опаде находится много разных органических молекул, некоторые из них быстрее перерабатываются почвенными организмами, чем лигнин или целлюлоза. Например, крахмал и аминокислоты – это простые органические молекулы, первыми вступающие в процесс разложения. Очень много почвенных бактерий и грибов имеют ферменты, необходимые для этого процесса. Все видели, как быстро скисает мясной бульон или ягодный сок.

Разложение крахмала и аминокислот обеспечивает большую часть энергетических потребностей микроорганизмов почвы. Поэтому так эффективны подкормки растений настоями, например крапивы или окопника, где много сахаров и белка.

В противоположность этому фенольные соединения, воски и лигнин состоят из более сложных органических молекул, в почве не деградируют в течение очень длительного периода времени. Но бактерии, грибы, черви с клещами перерабатывают органику, если есть влага, воздух, нужный уровень pH и температура. Об этом часто забывают начинающие. Органика, тонким слоем положенная на песок, высохнет, закопанная глубоко – заплесневеет, сгниет. Опилки без азота закислят почву, пищевые отходы и зеленые листья из-за избытка азота загниют.

Процесс разложения органических веществ называется минерализацией. Во время минерализации элементы, которые были частью структуры органических молекул, пройдя серию пищевых цепочек, постепенно окисляются до менее сложных форм, в конечном счете превращаясь в неорганические молекулы, которые и усваиваются корнями.

Цель у микробов чисто утилитарная – забрать из органики энергию углерода, NPK и микроэлементы и построить свои тела, прежде всего нуклеиновые кислоты, белки и клеточные стенки. Главный дефицит для них – это углерод с его энергией, второй лимитирующий фактор – азот, хотя в почве, богатой биотой, при достатке энергии сахаров дефицита азота нет, аммоний синтезируется из воздуха.

Таким образом, при разложении органики, в которой обычно много азота и фосфора, в богатой гумусом почве быстро создается избыток этих главных элементов, больше, чем требуется для дальнейшего роста микроорганизма, излишки связываются минералами почвы или накапливаются в клетках микроорганизмов. На почвах, бедных глиной и биотой, все это уходит в реки. Если в органике достаточно лигнина, то образующийся гумус иммобилизует избыточные азот и фосфор, и почва быстро наращивает плодородие.

Целинные черноземы – бесценное богатство России. Моя Живая Земля, где содержание гумуса быстро прирастает, – мое бесценное богатство.

Наряду с процессом минерализации идет и процесс иммобилизации, то есть происходит накопление питательных веществ в клетках организмов почвы, и эти вещества становятся временно недоступны для растений. Таким образом, питательные вещества в начале разложения органики накапливаются в микробной биомассе грунта.

Иммобилизация азота почвенными организмами часто представляет значительную проблему для растений. Азот является важным элементом для всех организмов, за него всегда идет борьба между биотой и растением. Дикие растения имеют множество способов отнимать азот у микробов, привлекают хищных амеб, вступают в симбиоз с азотофиксаторами, секретируют много сахаров в почву.

На заметку

Понимание происходящих в почве процессов приходит к садоводу не сразу. Умение вносить органику с нужным соотношением С/N – сродни умению ездить на велосипеде. Набьете шишек – научитесь.

Культурные растения не сохранили эти приемы, так что садовод должен следить за процессами в этой конкурентной борьбе и подкармливать растения азотом, но помнить, что лишний азот угнетает биоту, нарушает почвенные пищевые цепочки. А перекормленные азотом растения привлекают вредителей. Поэтому иногда подкормки компостными чаями с микроорганизмами работают намного мягче и эффективней, чем подкормки минеральными солями.

Поговорим о соотношении углерода к азоту (C/N) в органическом веществе. Разные растения имеют разные соотношения углерода к азоту в составе своих клеток. Например, бобовые имеют более высокую долю азота, чем злаковые травы.

Различие в C/N растительного опада влияет на круговорот азота (и других питательных веществ) в почве. Органическое вещество с высоким C/N не может удовлетворить потребности микроорганизмов в азоте для своего роста. А опад из растений с низким C/N, таких как бобовые, обеспечивает быстрый рост микроорганизмов.

Если почвы окультурены, гумуса много, доступного азота в почве достаточно для удовлетворения роста растений, то минерализация органического вещества, даже бедного азотом, не повлияет на рост растений в краткосрочной перспективе.

Наоборот, на бедных почвах внесение соломы и опилок вызывает острую нехватку азота у растений. Такие почвы надо мульчировать вначале готовым компостом и постепенно добавлять грубую углеродистую мульчу, сочетая ее с богатыми азотом зелеными травами.

Ученые доказали, что регулярное внесение органики с высоким содержанием азота часто не меняет общее содержание углерода в почве, гумус не накапливается, а плодородие растет. Почему? Оказывается, весь вносимый углерод входит в состав живых почвенных микроорганизмов, гумуса при избытке азота становится меньше, а биомасса микробов нарастает. И наоборот, при регулярном мульчировании почвы щепой лиственных веточек, в которых много лигнина и сахаров, содержание стабильного гумуса нарастает. При этом и биомасса микроорганизмов тоже может возрастать. Это сохраняет плодородие почвы в долгосрочной перспективе.

В природе подобные процессы происходят на Сахалине. Горные ручьи выносят в долины глинистые частицы, песок и ил, на них вырастают гигантские широколиственные травы. Появление таких трав – это маркер хорошего соотношения ила, песка и глины в наносных почвах. Опад зарослей гигантских горцев и борщевика содержит много лигнина, много сахаров и достаточно белка. В почвах быстро накапливается одновременно и гумус, и почвенная биота. Формируется особое очень активное почвенное сообщество с очень сложными и стабильными трофическими цепями. Разнообразие микроорганизмов и почвенных животных в этой системе очень высокое. В таких почвах обнаружены «высокоскоростные» марганцевые бактерии, которые перерабатывают органику с высокой скоростью.

Перенос подобной почвы на грядки и в сад приводит к гигантизму культурных растений в течение 2–3 лет. А если продолжать мульчировать эти грядки опадом горцев и не убивать биоту химией и лопатой, то стабильные урожаи без болезней можно получать очень долго.

Все ли знают, кто такие археи?

Итак, попытаемся разобраться в этой невидимой биологической составляющей. Раньше почвенные микроорганизмы ученые изучали с помощью микроскопов и размножали в чашках Петри. Последние пару десятков лет появилась новая наука – молекулярная генетика. И оказалось, что с помощью генетического анализа можно обнаружить в почве на два порядка больше микроорганизмов, чем предполагали раньше. Ученые, основываясь на методах молекулярной генетики, пришли к единому мнению, что в одном грамме хорошей почвы, хорошего компоста или вермикомпоста может содержаться миллиард бактерий и миллион грибов, не считая другие группы микроорганизмов.

Современным биологам стало понятно, что экологические взаимодействия между этими группами организмов очень сложны и многообразны. Они осознали проблему, что подавляющее большинство из микроорганизмов (по некоторым оценкам это не менее 99,9 %) не могут быть выделены, выращены и идентифицированы при их культивировании даже с помощью современных лабораторных методов.

В западной литературе уже не пишут просто о бактериях, а всегда пишут «бактерии и археи» (археи не могут быть идентифицированы при их культивировании, они не обладают ядром, имеют свою независимую эволюцию и характеризуются многими особенностями биохимии, отличающими их от других форм жизни). Другими словами, мы знаем, что в почве живут и взаимодействуют между собой миллиарды живых существ, но мы только начинаем понимать, чем всего лишь 0,1 % из этих миллиардов микроорганизмов действительно занимается в почвенной экосистеме.

Наука экология нам подсказывает, что чем больше индивидуальных цепочек «хищник – жертва» содержится в почве, тем сильнее они будут подавлять фитопатогены и защищать наши растения. Это показывает и практика.

Почвенные грибы в жизни растений

О роли грибов в жизни растений сейчас в популярной садоводческой литературе написано очень много. Еще больше распространено мифов о важности грибов для культурных растений. Попытаюсь помочь простым садоводам в этом разобраться. Думаю, стоит начать с простых примеров, с обычной практики.

Вы посадили, например, гладиолусы на четырех грядках. В почву первой внесли плохо перепревший навоз и растительные остатки типа картофельной ботвы. Итог плачевный – луковицы сгниют. В такой свежей органике много болезнетворных грибов. Вывод: в почве, в органике всегда много грибов вредных, запомним хотя бы один из них: гриб фузариум – главный враг всех цветоводов.

В почву второй грядки вносим свежий конский навоз и в навоз высаживаем луковицы. Осенью даже больные луковицы становятся здоровыми. Лошадей кормят овсом. В их навозе много остатков зерна, это великолепная среда для развития полезных грибов типа триходермы. Триходерма питается также и злым грибом фузариумом и «лечит» почву и луковицы. Вывод: в почве и органике есть много полезных грибов, вытесняющих патогены.

В почву третьей грядки вносим старый компост, пролежавший в мусорной куче пару лет. Осенью мы также получаем здоровые луковицы. Вывод: лучшая почва (лучший компост) – это целинная почва, где много лет росли травы-аборигены и не росли культурные растения со своими болезнями. В старой залежной почве соотношение полезных грибов к бактериям всегда выше, чем на окультуренных грядках. При перекопке почвы, при внесении минеральных удобрений и пестицидов почвенные грибы погибают в первую очередь, и на их место приходят вредные фузариумы из свежей органики.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13