Джеффри Уэст.

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний



скачать книгу бесплатно

Я не стану сейчас пытаться более точно определить, какие материалы, по моему мнению, подпадают под это краткое описание [ «жесткой порнографии»]; может быть даже, я никогда не смогу дать этому более внятное определение. Однако, когда я увижу порнографию, я ее узнаю.

Если подставить вместо слов «жесткая порнография» слово «сложность», получится именно то, что могут сказать многие из нас: возможно, мы не можем определить ее, но мы узнаем ее, когда увидим.

К сожалению, однако, если «узнавать, когда увидишь» и достаточно для Верховного суда США, то науке этого мало. Наука тем и славится, что ее развитие основывается на четкости и достоверности описания предметов, которые она изучает, и концепций, которые она использует. Как правило, мы требуем, чтобы они были точными, недвусмысленными и потенциально измеримыми. В качестве классических примеров величин, точно определенных в физике, но используемых в обиходном или метафорическом смысле в повседневном языке, можно вспомнить об импульсе, энергии и температуре. При этом, однако, существует немалое число действительно важных концепций, точное определение которых все еще вызывает нешуточные споры. В их число входят понятия жизни, инноваций, сознания, любви, устойчивости, города и, между прочим, сложности. Поэтому я не буду пытаться дать научное определение сложности, а изберу промежуточный путь и опишу то, что я считаю существенными элементами типичных сложных систем, по которым мы сможем узнать их, когда увидим, и отличить их от систем, которые можно назвать простыми или «просто» очень усложненными, но не обязательно сложными. Это обсуждение ни в коем случае не следует считать полным, но оно должно помочь в понимании наиболее заметных черт того, что мы подразумеваем под названием сложных систем[16]16
  Освещению создаваемой сейчас теории сложности посвящено довольно много популярных книг, в том числе: M. Mitchell. Complexity: A Guided Tour. N. Y.: Oxford University Press, 2008; M. M. Waldrop. Complexity: The Emerging Science at the Edge of Order and Chaos. N. Y.: Simon & Schuster, 1993; J. Gleick. Chaos: Making a New Science. N. Y.: Viking Penguin, 1987; S. A. Kauffman. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. Oxford, UK: Oxford University Press, 1995; J. H. Miller. A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society. N. Y.: Basic Books, 2016.


[Закрыть]
.

Типичная сложная система состоит из великого множества индивидуальных составляющих, или агентов, которые, будучи собраны вместе, приобретают коллективные характеристики, обычно не проявляющиеся в свойствах самих отдельных компонентов и непредсказуемые на их основе.

Например, вы – нечто гораздо большее, чем сумма составляющих вас клеток, а каждая из ваших клеток точно так же есть нечто гораздо большее, чем сумма всех молекул, из которых она состоит. То, что вы считаете собой – ваше сознание, ваша личность, ваш характер, – есть коллективное проявление множественных взаимодействий между нейронами и синапсами вашего мозга. Они, в свою очередь, непрерывно участвуют во взаимодействиях с клетками других частей вашего тела, многие из которых являются составляющими полуавтономных органов, например сердца или печени. Кроме этого, все они в той или иной степени непрерывно взаимодействуют с окружающим миром. Более того, каким бы парадоксальным это ни казалось, ни одна из приблизительно 100 триллионов клеток, составляющих ваше тело, не обладает свойствами, которые вы признали или определили бы в качестве именно вашей сущности; ни одна из них также не осознает и не знает, что является вашей составной частью. Каждая из них, так сказать, обладает своими собственными конкретными характеристиками и следует своим собственным правилам поведения и взаимодействия, в результате чего почти что чудом образует совместно со всеми остальными клетками вашего тела то, чем являетесь вы. И это происходит, несмотря на широчайший диапазон масштабов, как пространственных, так и временных, действующих в вашем теле, от микроскопического молекулярного уровня до макроскопических масштабов вашей повседневной жизни в течение всей ее продолжительности, до сотни лет. Вы – настоящий эталон сложной системы.

Аналогичным образом город – это нечто гораздо большее, чем простая сумма его зданий, дорог и жителей, компания – нечто гораздо большее, чем простая сумма ее сотрудников и продукции, а экосистема – нечто гораздо большее, чем простая сумма населяющих ее растений и животных. Экономические результаты, динамика жизни, творческая атмосфера и культура города или компании возникают из нелинейной природы множественных механизмов обратной связи, воплощенных во взаимодействиях между их жителями или сотрудниками, их инфраструктурой и окружающей средой.

Замечательный пример такой системы дает знакомый всем нам муравейник. Всего за несколько дней муравьи буквально строят свой город с нуля, собирая его по крупинке. Они возводят замечательные здания, в которых есть многоуровневые сети туннелей и камер, вентиляционные системы, продуктовые склады и инкубаторы, причем для поддержки всего этого предусмотрены сложные транспортные сети. Лучшие из наших инженеров, архитекторов и градостроителей признали бы эффективность, прочность и функциональность этих построек достойными самых высоких наград, если бы у них были проектировщики и строители. Однако никаких маленьких, но гениальных (да, собственно говоря, даже и посредственных) муравьев-инженеров, муравьев-архитекторов и муравьев-градостроителей нет и никогда не было. Тут нет никого главного.

Муравейники строятся без предварительного обдумывания и без помощи индивидуального разума или коллективных обсуждений или консультаций. Нет ни чертежей, ни проектов. Есть лишь тысячи муравьев, которые бездумно работают вслепую, перемещая миллионы крупинок земли и песка, из которых и складываются эти впечатляющие постройки. Это достижение – результат того, что каждый отдельный муравей следует всего нескольким простым правилам, передаваемым ему химическими стимулами и другими сигналами, а все вместе они совершают поразительно согласованную коллективную работу. Почти что можно подумать, что муравьи запрограммированы на выполнение микроскопических операций в рамках одного гигантского компьютерного алгоритма.

Кстати об алгоритмах. компьютерные модели таких процессов успешно воспроизводят результаты такого типа, в которых сложное поведение возникает из непрерывного повторения действий индивидуальных агентов по чрезвычайно простым правилам. Эти модели придали вес идее о том, что умопомрачительные динамика и организация систем высокой сложности происходят из очень простых правил, управляющих взаимодействием между их отдельными составляющими. Это открытие стало возможным лишь около тридцати лет назад, когда появились компьютеры, достаточно мощные для выполнения таких крупномасштабных расчетов. Сегодня такие вычисления легко можно произвести на обычном портативном компьютере. Эти компьютерные исследования сыграли важную роль в получении убедительного подтверждения идеи о том, что в основе сложности, которую мы наблюдаем во многих таких системах, на самом деле может лежать простота, и, следовательно, эти системы могут быть доступны для научного анализа. Так в поле нашего зрения появилась теоретическая возможность создания серьезной численной теории сложности, к которой мы еще вернемся.

Таким образом, общая характеристика сложной системы, вообще говоря, состоит в том, что ее целое больше, чем простая линейная сумма ее составных частей, – и зачастую существенно отличается от нее. Во многих случаях кажется, что такое целое живет своей жизнью, почти ничем не связанной с конкретными характеристиками отдельных составляющих его элементов. Более того, даже если мы понимаем, как взаимодействуют между собой индивидуальные составляющие, будь то клетки, муравьи или люди, это обычно не позволяет нам предсказать системное поведение образованного ими целого. Этот коллективный результат, в котором система проявляет свойства, существенно отличные от получающихся при простом сложении отдельных вкладов всех составляющих ее элементов, называют эмерджентным поведением. Оно является хорошо заметной особенностью экономических систем, финансовых рынков, городских сообществ, компаний и организмов.

Самый важный урок, который мы извлекаем из этих исследований, заключается в том, что во многих из таких систем нет центрального управления. Например, при строительстве муравейника ни один из муравьев не имеет никакого понятия о том грандиозном предприятии, в котором он участвует. Муравьи некоторых видов даже используют в качестве строительного материала для сооружения своих замысловатых построек свои собственные тела: кочевые муравьи и огненные муравьи сцепляются в плоты и мосты, которые они используют для преодоления водных преград и других препятствий, встречающихся им в набегах за продовольствием. Здесь речь идет о так называемой самоорганизации. Это эмерджентное поведение, в рамках которого составные части объединяются, образуя эмерджентное (вновь возникающее) целое. Это же происходит при образовании социальных групп людей – например, книжных клубов или политических кампаний, – человеческих органов, которые можно считать результатом самоорганизации составляющих их клеток, или же городов, в которых можно увидеть проявление самоорганизации их жителей.

С концепциями эмерджентности и самоорганизации тесно связана еще одна важная характеристика сложных систем – их способность к адаптации и развитию в случае изменения внешних условий. Разумеется, наилучшим примером такой сложной адаптивной системы является сама жизнь во всех своих необычайных проявлениях, от клеток до городов. Разумеется, дарвиновская теория естественного отбора – это научная концепция, созданная именно для того, чтобы объяснить и описать непрерывный процесс развития организмов и экосистем и их адаптации к изменяющимся условиям.

Изучение сложных систем научило нас осторожному отношению к наивному разбиению систем на независимо действующие составные части. Более того, малое возмущение в одной из частей системы может привести к гигантским последствиям в других ее частях. Системе могут быть свойственны внезапные и, по-видимому, непредсказуемые изменения – классическим примером таких изменений можно считать биржевой крах. Одна или несколько тенденций могут усиливать другие тенденции в контуре с положительной обратной связью, в результате чего такой процесс быстро становится неуправляемым и переходит через пограничное состояние, по другую сторону которого поведение системы изменяется самым радикальным образом. Весьма зрелищным проявлением этого процесса был глобальный крах финансовых рынков 2008 г., имевший потенциально катастрофические социальные и экономические последствия для всего мира, порожденный неправильным пониманием динамики местечкового и сравнительно локализованного рынка американской недвижимости.

Лишь в течение последних тридцати лет ученые начали всерьез рассматривать задачи изучения сложных адаптивных систем как таковых и искать новые пути их исследования. На основе этих исследований естественным образом возник интегрированный, систематический междисциплинарный подход, включающий в себя широкий диапазон методик и концепций, позаимствованных из разных областей науки, от биологии, экономики и физики до информатики, инженерии и социально-экономических исследований. Из этих исследований можно сделать один важный вывод, состоящий в том, что, хотя подробное предсказание поведения таких систем обычно оказывается невозможным, в некоторых случаях можно получить приближенное численное описание среднего состояния наиболее заметных параметров такой системы. Например, хотя мы никогда не сможем точно предсказать дату смерти конкретного человека, понять, почему продолжительность человеческой жизни составляет порядка ста лет, должно быть вполне в наших силах. Применение таких численных методов к задачам, связанным с устойчивостью и долговременной жизнеспособностью нашей планеты, имеет первостепенное значение, поскольку в них уже заложено предположение о существовании тех взаимосвязей и взаимозависимостей, которые столь часто исключаются из рассмотрения существующими методиками.

Масштабирование от малого к большому часто сопровождается эволюцией от простого к сложному с сохранением основных элементов или составных частей системы неизменными или фиксированными. Эта особенность характерна для инженерных и экономических систем, компаний, городов, организмов и эволюционных процессов, причем в последних она проявляется, может быть, наиболее ярко. Например, небоскреб, построенный в большом городе, – это строение существенно более сложное, чем скромное семейное жилище в деревне, но основополагающие принципы их структуры и конструкции, в том числе в том, что касается механики, передачи энергии и информации, размеров электрических розеток и водопроводных кранов, телефонов, компьютеров, дверей и так далее, остаются приблизительно неизменными независимо от размеров здания. При увеличении масштаба с моего дома до нью-йоркского небоскреба эти базовые составляющие элементы не изменяются сколько-нибудь существенным образом: они остаются общими для всех нас. Аналогичным образом эволюция живых организмов привела к существованию широчайшего спектра их размеров и необычайного разнообразия типов морфологии и взаимодействий, которые часто отражают увеличение сложности; однако их элементарные составляющие – например, клетки, митохондрии, капилляры и даже листья – не претерпевают существенных изменений при изменении размеров организмов или увеличении сложности того класса систем, к которому они принадлежат.

7. сами себе сети: рост от клеток до китов

В начале этой главы я отмечал тот весьма удивительный и на первый взгляд противоречащий здравому смыслу факт, что, несмотря на все причуды и случайности эволюционной динамики, почти все наиболее фундаментальные и сложные из измеримых характеристик организмов масштабируются с размером поразительно простым и регулярным образом. Это обстоятельство ясно иллюстрирует, например, приведенный на рис. 1 график зависимости уровня метаболизма некоторых животных от массы их тела.

Эта систематическая закономерность подчиняется простой математической формуле, которую можно выразить на профессиональном языке следующим образом: «уровень метаболизма масштабируется по степенному закону с показателем близким к ?». Далее я приведу гораздо более подробное объяснение этой формулы, но пока что я хотел бы привести простую иллюстрацию того, что она означает на обиходном языке. Рассмотрим следующее соотношение: слон приблизительно в 10 000 раз (104, на четыре порядка величины) тяжелее крысы; соответственно, в его теле приблизительно в 10 000 раз больше клеток. Согласно степенному закону с показателем ?, несмотря на то что слону требуется поддерживать в 10 000 раз больше клеток, уровень его метаболизма (то есть количество энергии, необходимое для его выживания) всего в 1000 раз (103, на три порядка) больше, чем у крысы. Обратите внимание на соотношение степеней десятки: оно равно 3:4. В этом случае при увеличении размеров действует чрезвычайно сильная экономия на масштабе, предполагающая, что клетки тела слона потребляют всего около одной десятой энергии, необходимой клеткам крысы. Стоит отметить в скобках, что следующее из этого уменьшение износа клеток в метаболических процессах лежит в основе большего долголетия слонов и дает нам возможность понять старение и смертность. Тот же закон масштабирования можно выразить и в несколько другом виде: если размеры одного животного вдвое больше размеров другого (будь то 10 кг и 5 кг или 1000 кг и 500 кг), то, используя классическое линейное мышление, можно наивно предположить, что и уровень метаболизма первого животного должен быть в два раза выше. Однако нелинейный закон масштабирования говорит, что уровень метаболизма не удваивается; на самом деле его увеличение составляет всего лишь около 75 %, что соответствует громадной экономии – по 25 % на каждое удвоение размера[17]17
  Читателю, знакомому с математикой степенных законов, должно быть известно, что степенной закон с показателем ?, строго говоря, означает, что при удвоении размеров уровень метаболизма должен увеличиваться в 23/4 раза, то есть умножаться на 1,68. Это соответствует увеличению на 68 %, что несколько меньше указанного увеличения на 75 %. При представлении подобных иллюстративных примеров во всем тексте этой книги я пренебрегаю этой неточностью ради простоты изложения.


[Закрыть]
.

Отметим, что отношение, равное ?, – это наклон кривой на рис. 1, на котором все величины (уровень метаболизма и масса) представлены в логарифмическом масштабе, что означает, что по обеим осям отложены их десятикратные приращения. В таком представлении наклон графика равен показателю степенного закона.

Закон масштабирования уровня метаболизма, названный по имени биолога, который первым сформулировал его, законом Клайбера, применим почти для всех таксономических групп, в том числе млекопитающих, птиц, рыб, моллюсков, бактерий, растений и клеток. Однако еще большее впечатление производит тот факт, что сходные законы масштабирования действуют, по существу, для всех физиологических величин и жизненных процессов: скорости роста, частоты сердцебиения, скорости эволюции, длины генома, плотности митохондрий, количества серого вещества мозга, продолжительности жизни, высоты деревьев и даже числа листьев на них. Более того, в логарифмическом масштабе все законы масштабирования этого головокружительного набора выглядят как график, приведенный на рис. 1, а следовательно, имеют ту же математическую структуру. Все они представляют собой «степенные законы», показатель которых (наклон графика) обычно кратен ?: классическим примером как раз и является закон масштабирования метаболизма с показателем ?. Например, при удвоении размеров млекопитающего частота сердцебиения уменьшается приблизительно на 25 %. Таким образом, число 4 играет фундаментальную и почти что магически универсальную роль во всех проявлениях жизни[18]18
  Сводки различных аллометрических законов масштабирования в биологии приведены в нескольких превосходных работах. Среди них можно назвать: W. A. Calder. Size, Function and Life History. Cambridge, MA: Harvard University Press, 1984; E. L. Charnov. Life History Invariants. Oxford, UK: Oxford University Press, 1993; T. A. McMahon and J. T. Bonner. On Size and Life. N. Y.: Scientific American Library, 1983; R. H. Peters. The Ecological Implications of Body Size. Cambridge, UK: Cambridge University Press, 1986; K. Schmidt-Nielsen. Why Is Animal Size So Important? Cambridge, UK: Cambridge University Press, 1984.


[Закрыть]
.

Как такая удивительная регулярность возникает из статистических процессов и исторических случайностей, свойственных процессу естественного отбора? Повсеместное господство степенного закона масштабирования с показателями, кратными ?, явно указывает на то, что естественный отбор подчинялся другим общим физическим принципам, выходящим за пределы конкретных конструкций. Самоподдерживающиеся структуры высокой сложности – будь то клетки, организмы, экосистемы, города или корпорации – требуют тесного объединения огромных количеств составных частей, на всех уровнях которого необходимо действенное обслуживание. В живых системах эта задача решается путем развития фракталоподобных сетевых систем с иерархическим ветвлением, предположительно оптимизированных механизмами непрерывной «конкурентной» обратной связи, свойственными естественному отбору. Именно общие физические, геометрические и математические свойства этих сетевых систем лежат в основе законов масштабирования, отвечая в том числе и за преобладание показателей, кратных ?. Например, закон Клайбера вытекает из требования минимизации энергии, необходимой для циркуляции крови по системе кровообращения млекопитающих, в том числе и человека, чтобы сделать максимальной долю энергии, которую можно использовать на воспроизводство. В числе других примеров таких сетей можно назвать дыхательную, мочевыделительную и нервную системы, а также сосудистые системы деревьев и других растений. Об этих идеях мы еще поговорим несколько более подробно, так же как и о концепциях заполнения пространства (необходимости питания всех клеток тела) и фракталах (геометрии этих сетей).

В сетях млекопитающих, рыб, птиц, растений, клеток и целых экосистем, несмотря на различия их конструкций, образовавшихся в результате эволюции, действуют одни и те же основополагающие принципы и свойства. Будучи выражены в математических терминах, они не только приводят к объяснению происхождения универсальных степенных законов масштабирования с показателями, кратными ?, но и позволяют получить численные предсказания относительно фундаментальных характеристик этих систем, в том числе, например, размеров самых мелких и самых крупных млекопитающих (землероек и китов), напора крови и частоты пульса в любом сосуде кровеносной системы любого млекопитающего, высоты самого высокого дерева во всех Соединенных Штатах, длительности сна у слонов и мышей или структуры сосудистой системы опухолей[19]19
  Эти идеи первоначально были высказаны в работе: G. B. West, J. H. Brown and B. J. Enquist. A General Model for the Origin of Allometric Scaling Laws in Biology // Science. 1997. 276. P. 122–126. Нематематические обзоры общей теории и ее следствий можно найти здесь: G. B. West and J. H. Brown. The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization // Journal of Experimental Biology. 2005. 208. P. 1575–1592; G. B. West and J. H. Brown. Life’s Universal Scaling Laws // Physics Today. 2004. 57. P. 36–42. В соответствующих местах следующих глав приводятся ссылки на различные технические статьи, посвященные конкретным уточнениям и ответвлениям этой общей основы.


[Закрыть]
.

Они же приводят нас к теории роста. Рост можно рассматривать в качестве особого случая явления масштабирования. Взрослый организм – это, по сути дела, результат нелинейного увеличения ребенка; чтобы убедиться в этом, сравните пропорции своего тела с пропорциями младенца. На любом этапе развития рост осуществляется путем распределения метаболической энергии, передаваемой по сетям клеткам уже существующим, для образования новых клеток, из которых составляются новые ткани. Этот процесс можно проанализировать при помощи теории сетей и вывести универсальную численную теорию кривых роста, применимую к любым организмам, в том числе и опухолям. Кривая роста – это попросту график зависимости размеров организма от его возраста. Если у вас есть дети, вы наверняка знакомы с такими кривыми, так как педиатры все время показывают их родителям, чтобы те могли увидеть, как развитие их детей соотносится с уровнями, ожидаемыми для среднестатистического ребенка соответствующего возраста. Теория роста также объясняет один любопытный парадокс, над которым вы, возможно, уже задумывались, а именно тот факт, что мы в какой-то момент перестаем расти, хотя и не перестаем есть. Оказывается, это явление вытекает из сублинейного масштабирования метаболизма и экономии на масштабе, свойственных такой сетевой конструкции. В одной из следующих глав та же парадигма будет применена к росту городов, компаний и экономических систем для разъяснения фундаментального вопроса о происхождении неограниченного роста и возможности его устойчивости.

Поскольку сети определяют скорость подачи в клетки энергии и других ресурсов, они задают темп всех физиологических процессов. Поскольку клетки крупных организмов вынуждены работать систематически медленнее, чем клетки организмов более мелких, темп жизни систематически снижается с ростом размеров. Так, крупные млекопитающие дольше живут, дольше взрослеют и имеют более медленное сердцебиение и клетки, работающие менее интенсивно, чем у мелких млекопитающих, причем степень всех этих различий одинакова и предсказуема. Мелкие создания живут стремительно, а крупные идут по жизни тяжеловесно, но зато более эффективно: вообразите себе суетливо мечущуюся мышку на фоне величественно выступающего слона.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13