Дэвид Агус.

Завтра начинается сегодня. Как воспользоваться достижениями anti-age медицины



скачать книгу бесплатно

Еще мы знаем, что изменения в ДНК – мутации – могут вызвать такие заболевания, как деменция и рак. Часть программы, управляющей старением и смертью, находится в наших генах, так что нужно найти модулирующие гены – отключить «тумблеры» с подписью «смерть» или «старость», – чтобы продлить жизнь, причем увеличить не просто ее продолжительность, но и качество. Ученые уже научились менять некоторые гены у червей, заставляя механизм бессмертия работать немного дольше. Почему бы нам не научиться делать так же и с людьми?

Мы обычно считаем старение универсальным процессом, который делает нас все менее плодовитыми, более слабыми и уязвимыми для болезней, но такой взгляд совершенно ошибочен – по крайней мере, если рассматривать процесс старения у других биологических видов. Оказывается, феномен старения проявляется потрясающе разнообразными и иногда очень странными способами. Недавно это очень убедительно продемонстрировали в статье 2014 года, написанной исследователями из консорциума институтов, в том числе Университета Южной Дании, Института демографических исследований имени Макса Планка в Ростоке (Германия), Университета Квинсленда в Австралии и Амстердамского университета в Голландии, и изданной в престижном научном журнале Nature [5]. Авторы описывают, как изучали старение у самых разных видов – от львов, косаток, бабуинов, вшей, ящериц и нематод до водорослей, дубов, кладоцер, лягушек и раков-отшельников. Всего в списке значится одиннадцать видов млекопитающих, двенадцать видов других позвоночных, десять видов беспозвоночных, двенадцать видов деревьев и один вид водорослей.


Микрофотография рта и пяти щупалец пресноводной Hydra magnipapillata. Этот биологический вид может жить практически вечно – по крайней мере, по сравнению с нами.


У некоторых видов, как обнаружили ученые, старость развивалась вполне «ожидаемо»: риск смерти повышался. У большинства млекопитающих, в том числе косаток и людей, а также у некоторых беспозвоночных, в том числе кладоцер, старость «работает» именно по такой модели. Но потом обнаружилось вот что: у некоторых видов смертность уменьшается с возрастом. Иными словами, чем старше они становятся, тем меньше у них шансов умереть. В некоторых диких случаях смертность падает практически до виртуального (и, естественно, теоретического) нуля до самой смерти! Кто на нашей планете так может? У пустынных черепах и многих видов растений максимальная смертность приходится на юный возраст, а с возрастом неуклонно снижается.

Как ни удивительно, но есть даже такие виды, у которых смертность остается практически постоянной в течение всей жизни и вообще не зависит от возраста. Со временем они не становятся ни слабее, ни сильнее. Поразительнее всего это явление проявляется у маленького пресноводного животного Hydra magnipapillata (гидра обыкновенная), у которой смертность всегда низкая. Для этого существа можно подобрать такие лабораторные условия, в которых оно станет, по сути, бессмертным.

Некоторые эксперты подсчитали, что 5 % гидр останутся в живых через 1400 лет, если их держать в определенной среде, которая не позволяет им стареть в общепринятом смысле слова. Да, знаю, это звучит как научная фантастика. Но, с другой стороны, обращение старения у мышей вспять путем сшивания их с молодыми мышами тоже казалось фантастикой.

У некоторых видов растений и животных смертность с возрастом меняется очень мало. Примеры среди растений: рододендрон, калина, некоторые виды лебеды; среди животных – рак-отшельник, обыкновенная ящерица и красноногая лягушка; среди морских организмов – ламинария пальчаторассеченная (водоросль), красное морское ушко и коралл красная горгонария; среди птиц – большая синица и мухоловка-белошейка.

Если посмотреть на плодовитость сорока шести видов, изученных исследователями, то тоже найдем удивительные расхождения с распространенными взглядами на старение. У нас, людей, плодовитость высокая, но в сравнительно небольшой период времени; с обеих сторон он обрамляется длинными периодами бесплодия. Такую же модель мы видим у других млекопитающих, например косаток, шимпанзе и серн (полорогих, встречающихся в горах Европы), а также у некоторых птиц, в частности ястребов-перепелятников. Но некоторые виды с возрастом становятся лишь более плодовитыми. Подобное явление особенно распространено среди растений (агава) и у редких горных растений. С другой стороны, червь-нематода Caenorhabditis elegans рождается просто суперплодовитым, а потом очень быстро теряет способность к размножению.

Не все слабеют и подвергаются большей опасности умереть с возрастом. Некоторые виды с возрастом, напротив, становятся сильнее и умирают с меньшей вероятностью, другие же и вовсе практически обладают иммунитетом к старению. Проще говоря, уменьшение силы и плодовитости с возрастом – это не незыблемый закон природы, но мы, люди, считаем именно так. С одной стороны, есть виды, которые долго живут, но их смертность увеличивается; с другой стороны – виды, которые живут недолго, но смертность их при этом уменьшается. По словам ведущего автора исследования, Оуэна Джонса, «нет смысла рассматривать старение с точки зрения того, до какого возраста могут дожить отдельные представители вида. Куда интереснее определять старение через траекторию смертности: увеличивается она с возрастом, уменьшается или не изменяется». Джонс надеется, что его исследования сподвигнут и других ученых к изучению этой занимательной области науки и помогут нам как-то изменить процесс старения у людей.


Некоторые виды карпозубообразных рыб (киллифишей) живут всего пару месяцев и служат великолепной моделью для изучения старения. Этот киллифиш во взрослом возрасте достигает длины около 6,5 см.


Одно из препятствий для изучения человеческого старения – трудности с поиском моделей среди других видов, которые стареют так же, как и мы. Логичным с виду выбором выглядят старые люди, особенно те, кто прожил больше ста лет, но такая работа будет двигаться с черепашьей скоростью. Представьте: вам понадобится семьдесят-восемьдесят лет (или даже больше), чтобы исследовать процесс старения людей и узнать результат вашего вмешательства. Это нереалистично и непрактично. Так что вместо людей мы используем мышей, которые живут всего три-четыре года, но их ДНК и процессы старения достаточно сходны с нашими. Благодаря изучению мышей мы узнали, как гены становятся более или менее активными с возрастом; мы даже разработали лекарства, которые помогают мышам жить дольше и лучше.

Еще одно животное, оказавшееся очень полезным для исследований, – нотобранх Фурцера. Это довольно редкая рыба, встречающаяся в основном в прудах Восточной Африки, появляющихся в сезон дождей. После того как из икринок вылупляются мальки, они примерно за сорок дней вырастают до взрослого размера – 6,5 см. Живут они всего несколько месяцев. Но их процесс старения поразительно напоминает подобный процесс у людей. Мы с годами дряхлеем и постепенно впадаем в маразм; точно так же и нотобранхи Фурцера теряют способность учиться новому. Их иммунная система ослабевает. Мышечная масса с возрастом, как и у нас, уменьшается. Самки становятся бесплодными. Одна команда исследователей в Стэнфорде вывела изучение нотобранхов Фурцера (их еще называют «бирюзовыми киллифишами», потому что блестящие чешуйки имеют бирюзовый оттенок) на новый уровень, полностью секвенировав их геном и в процессе обнаружив несколько генов, влияющих на процесс старения у других видов, в том числе мышей и людей. Они даже сделали молекулярные инструменты, чтобы «поиграть» с генами рыб; один из них, CRISPR, я уже ранее упоминал. CRISPR работает подобно ножницам: он в буквальном смысле отрезает кусочки ДНК, чтобы заменить их другими кусочками. С помощью CRISPR ученым удалось изменить некоторые гены, связанные со старением рыб. Подобные исследования очень интересны и дают надежду, что удастся создать лекарства от старения, которые помогут нам стареть медленнее и жить дольше. Например, препарат, который продлит жизнь нотобранху на какие-то две недели, возможно, ляжет в основу вещества, которое прибавит людям несколько лет.

Но важен и контекст. Контекст 50-летнего человека – не такой, как у 20-летнего. Контекст у диабетика, страдающего астмой, не такой, как у больного-сердечника с депрессией. Но в идеальном случае для любого контекста можно найти какое-нибудь средство, которое замедлит процесс старения. Если бы это не было правдой, то мы не видели бы таких потрясающих различий между «биологическим возрастом» людей, хронологический возраст (то есть возраст в годах) которых одинаков. Ученые Центра изучения старения и человеческого развития Университета Дьюка в сотрудничестве с другими исследовательскими институтами отслеживали около тысячи новозеландцев, рожденных в 1972 и 1973 годах («Данидинское исследование»); они рассчитали их «биологический возраст» через двадцать лет после того, как им исполнилось восемнадцать [6]. Сейчас «калькуляторы возраста» получили огромную популярность – появились даже сайты, где вы можете, введя несколько цифр и поделившись кое-какими подробностями образа жизни, получить свой «биологический» (в противоположность хронологическому) возраст, но вот никакого стандартизированного клинического процесса измерения биологического возраста пока не существует.

Чтобы аккуратно отразить процесс старения, ученые основали этот теоретический «биологический возраст» на широком спектре параметров: работа почек, легких и печени, количество липопротеинов низкой плотности (ЛНП, или «плохого» холестерина), здоровье зубов, метаболической и иммунной систем, когнитивное здоровье, даже состояние кровеносных сосудов глазного дна. Маленькие глазные кровеносные сосуды уже давно используются в качестве суррогата для оценки состояния кровеносных сосудов мозга. Всего отслеживалось восемнадцать биологических маркеров; их показания сравнивались с результатами тестов, которые обычно сдают пожилые люди, чтобы оценить, насколько сильно они постарели, – на координацию, силу мышц, походку, способность держать равновесие, когнитивные способности.

У людей, достаточно молодых для профилактики возрастных заболеваний, скорость старения поддается подсчету, и это открывает новые двери для исследований антивозрастной терапии.

Ученые, обследовавшие добровольцев в возрасте 26, 32 и 38 лет, обнаружили, что большинство подопытных стареют с нормальной скоростью (один «биологический» год за один хронологический), но вот некоторые из них старели невероятно быстрее или медленнее [7]. Результаты показали, что биологические возрасты 38-летних подопытных находятся в промежутке от 28 до 61 года. Некоторые постарели на три «биологических» года за один календарный. Те, чей биологический возраст был старше календарного, и выглядели старше. Один результат оказался довольно пугающим: люди, которые старели быстрее всего, уже демонстрировали признаки когнитивного спада и старения мозга и были физически слабее. Если биомаркеры показывали слишком быстрое старение, это подтверждалось и другими тестами.


Распределение биологических возрастов участников Данидинского исследования в Новой Зеландии. Хронологический возраст всех участников составлял 38 лет.


То было одно из первых исследований молодых взрослых в надежде понять, почему люди стареют с разной скоростью; это явление мы рассматривать только-только начали. Авторы исследования, опубликованного в Proceedings of the National Academy of Sciences в 2015 году, писали: «Наши результаты показывают, что у людей, достаточно молодых для профилактики возрастных заболеваний, скорость старения поддается подсчету, и это открывает новые двери для антивозрастной терапии» [8]. Кроме того, они подчеркнули важность изучения молодых людей для поиска ключей к продлению здоровой жизни, и мы, «возможно, сосредоточиваем усилия не на том конце жизненного цикла», рассматривая только людей во второй половине жизни. Тесты, разработанные этими учеными, в будущем станут лишь еще более информативными, точными и полезными: к ним добавят новые биомаркеры, отбросят старые, оценят важность каждого из них. Подобные калькуляторы еще и помогут сэкономить на медицинских расходах. Если вы в пятьдесят лет узнаете, что ваше тело биологически ведет себя как сорокалетнее, то вам, может быть, не понадобится делать маммографию или колоноскопию так же часто, как кому-то более старому в биологическом плане.

Будут разработаны и другие, более специализированные и сложные калькуляторы. Знаете ли вы, например, насколько «старо» ваше сердце? Вы можете это узнать с помощью онлайн-калькулятора, разработанного Национальным институтом сердца легких и крови и Бостонским университетом. Вы, возможно, удивитесь, узнав, что ваше сердце не так молодо, как ваш хронологический возраст. В докладе Центра по контролю и профилактике заболеваний (CDC) 2015 года говорится, что у каждых 3 из 4 американцев в возрасте от 30 до 74 лет «сердечный возраст» превышает хронологический [9]. В частности, у мужчин «сердечный возраст» в среднем превышал хронологический почти на 8 лет, а у женщин – на 5,4 года. Эти цифры были получены из крупного, широко известного «Фреймингемского исследования», в котором задействовали информацию о более чем 570?000 американцах. Калькулятор учитывает различные факторы риска: курение, давление, наличие или отсутствие диабета, индекс массы тела. Чем больше факторов, тем «старше» сердце.

В исследовании обнаружились и географические различия. Американцы с «самыми старыми» сердцами живут в основном на Юге: в штатах Миссисипи, Западная Виргиния, Кентукки, Луизиана и Алабама наибольший процент взрослых, чей «сердечно-сосудистый» возраст на 5 лет и более превышает хронологический. Более «молодые» сердца нашли в таких штатах, как Юта, Колорадо, Калифорния, Гавайи и Массачусетс. Стоит отметить, что люди с более «молодыми» сердцами чаще живут в тех местах, где ниже количество курящих и страдающих ожирением: и то и другое – большие факторы риска для сердечно-сосудистых заболеваний.

Предназначение калькулятора – не повергнуть людей в уныние, а, наоборот, вдохновить их на уменьшение «сердечного возраста»: бросить курить, похудеть, начать принимать лекарства (в частности, антигипертензивные препараты и статины). Мы знаем, что люди, которые решили подсчитать свой «сердечный возраст», с большей вероятностью попытаются улучшить свое сердечно-сосудистое здоровье по сравнению с теми, кто получает лишь общую информацию, или теми, кто предпочитает дождаться первого сердечного приступа, чтобы начать все-таки интересоваться факторами риска.

Если молодость или старость можно назвать состоянием организма, то здоровье – это тоже состояние. Если думать в подобных терминах, то вопросы здоровья и благополучия станут довольно-таки простыми. Коули не понимал, почему его токсины работают, но ему – и его пациентам – это было неважно. Мечников тоже не понимал точного механизма положительного влияния кишечных бактерий на здоровую физиологию. И это тоже было неважно. Оба специалиста видели результаты, которые действительно помогали пациентам.


Болезни сердца, диабет, рак, аутоиммунные заболевания и нейродегенеративные расстройства – это «поломки» сложнейшей системы – организма человека, ключа к которому у нас еще нет.


Очень важно, чтобы вы смотрели на свое здоровье с точки зрения, учитывающей, насколько сложно и таинственно ваше тело. Вы, возможно, никогда не поймете и не узнаете всего о том, как оно работает и почему говорят, что какой-нибудь X вызывает конкретный Y. Я всегда подчеркиваю: относитесь к человеческому телу и его взаимодействию с болезнями с уважением – как к сложной, эмерджентной системе, которую вы, скорее всего, полностью не поймете никогда. Слово эмерджентный я здесь использую в том смысле, что мы – нечто большее, чем сумма наших отдельных частей или даже сумма индивидуальных свойств наших частей.

Чтобы понять эту концепцию, которая используется в таких разных отраслях знания, как философия, наука и искусство, представьте себе, например, ваше сердце. Оно, что очевидно, состоит из сердечных клеток. Но сами по себе сердечные клетки не умеют перекачивать кровь. Для этого нужно сердце целиком. Работа сердца по перекачиванию крови – это эмерджентное свойство сердца, результат, вызванный сложнейшим взаимодействием более мелких и простых объектов, которые сами по себе этими свойствами не обладают. Болезни сердца, диабет, рак, аутоиммунные заболевания и нейродегенеративные расстройства – это «поломки» сложнейшей системы. Например, рак – это не что-то, чем тело «заболевает» или «заражается»; как уже говорилось ранее, это результат того, что тело делает со своими клетками и механизмами. Вот почему профилактика – это самый важный инструмент обеспечения процесса старения, подобного тому, что мы наблюдаем у дубов (или, если вам больше нравится, сухопутных черепах). С помощью профилактики мы склоняем чашу весов в положительную сторону, выбирая, что тело будет делать сегодня и в будущем. То, что происходит с нами в конце жизни, уходит корнями далеко в ее начало.

Как обмануть смерть и рак

Человеческое тело невероятно живуче. Столкнувшись с болезнью или инфекцией, оно адаптируется, чтобы сохранить жизнь. При большинстве заболеваний тело чувствует себя лучше или хуже в зависимости от того, прогрессирует недуг или находится в ремиссии. Рак – одна из очень немногих болезней, которая бывает агрессивной и может перехитрить даже самое живучее тело. Как с раком ни борись, он становится лишь еще враждебнее, а шансы, что противораковая терапия поможет, становится все меньше. С другой стороны, в детском возрасте рак обычно излечим. Так что где-то есть «тумблер», который отличает слабые виды рака, которых можно победить, от сильных и выносливых, которые рано или поздно убивают человека. В возрасте от 25 до 50 лет люди заболевают раком сравнительно редко. Будущие исследования, скорее всего, установят причины этого и, может быть, найдут новые способы терапии, которые превратят смертоносные раки в слабые, которые можно победить. Или же рак можно будет каким-то образом отправить на «карантин» и сдерживать лекарствами, чтобы он не нанес вреда телу.

В прошлом я не раз критиковал свою отрасль медицины за отсутствие прогресса в области разработки методов лечения, которые могут замедлить развитие рака или вообще его предотвратить. Но сейчас наконец-то появилась надежда – благодаря новым технологиям: секвенированию опухолей и молекулярному таргетированию раковых опухолей препаратами, которые, по сути, отключают «тумблеры», заставляющие клетки идти вразнос. Это позволяет выгадать самое ценное, что у нас есть: время. Для смертельно больного пациента важны даже несколько лишних недель или месяцев – особенно если вот-вот должна появиться новая терапия. Сейчас молекулярное таргетирование используется намного чаще, чем в то время, когда мы применяли его для лечения Стива Джобса, но оно работает не во всех случаях: на данный момент оно помогает примерно 20–30 % больных всеми видами рака. Кроме того, оно может быть очень дорогим, но я предполагаю, что это вскоре изменится: различные экономические силы приведут к снижению цен. Чтобы лучше понять, как работает молекулярное таргетирование, посмотрите на следующий рисунок. Этот конкретный пример предоставила компания Foundation Medicine, занимающаяся секвенированием ДНК опухолей [10].

Вы видите результаты секвенирования опухоли у пациента с раком легких. Такие отчеты я получаю, когда отправляю частицы раковых тканей на исследование и генетическое секвенирование. Не пытайтесь даже понять абракадабру, которую мы используем для обозначения генов. Сосредоточьтесь на результатах: пять геномных мутаций, или изменений в четырех целевых генах, оказались связаны с раком легких у этого пациента.


Отчет о секвенировании генов опухоли у пациента с продвинутой стадией рака легких.


Образец рака, который используют для секвенирования, берут из так называемого парафинового блока; по сути, это очень тонкий «ломтик» рака, извлеченный из пациента и помещенный в вязкий материал (парафин). Там его хранят после операции; прежде чем отдать на генетическое тестирование, его исследует патологоанатом.


Группа парафиновых блоков с закрепленными внутри кусочками опухолей.


У каждого больного раком есть такой парафиновый блок – образец опухоли, по которому был установлен первоначальный диагноз. Следующее изображение – снимок биопсии легкого. В данном случае для забора образца опухоли используется игла.

Затем из этого образца изолируется и секвенируется ДНК. Сравнивая ДНК из клеток биопсии со здоровыми клетками пациента, мы узнаем, какие изменения ДНК сделали клетку раковой. Это «тумблеры», которые включили рак. А теперь давайте вернемся к результатам секвенирования.


Компьютерная томография процесса биопсии легкого, проведенного по подозрению на рак легких. Справа – игла, входящая в легочную массу. Небольшое изображение внизу справа показывает, где именно сделан большой снимок (в том месте, где линия пересекает пациента).


Для одной из целей, гена киназы анапластической лимфомы (ALK), существует лекарство, одобренное FDA. Это лекарство просто великолепно помогает, но только тем пациентам, у которых этот ген изменен. Еще одна хорошая новость для секвенированного здесь рака состоит в том, что пациент не только может попробовать, по крайней мере, одну существующую терапию, но и записаться на десять разных клинических испытаний – это возможности попробовать другие лекарства, действие которых на этот тип рака пока проверяется.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27