Аркадий Курамшин.

Жизнь замечательных устройств



скачать книгу бесплатно



Возьмём четыре части нашего Огненного Дракона, скрывающего в своём брюхе Магическую Сталь, девять частей нашего Магнита, смешаем с раскалённым Вулканом… отбросим пену и возьмем зерно, трижды очистим его огнём и Солнцем, которое можно легко получить, когда Сатурн увидит своё отражение в зеркале Марса. Так мы получаем Хамелеона нашего Хаоса… Дитя-Гермафродита, порченного укусом Бешенного сумасшедшего пса…



Этот цветастый зашифрованный язык не что иное, как описание воспроизводимого процесса выделения сурьмы (Дитя-гермафродита) из её сульфидного минерала (Магнит Сатурна), используя железо (Огненный Дракон или Марс) в качестве восстановителя. Даже отсылка Филалетеса к водобоязни (укус бешенного сумасшедшего пса) указывает на химические процессы – под водобоязнью здесь подразумевается то, что сурьма «боится» металлической воды (ртути). Говоря проще, сурьма не образует устойчивую амальгаму.

Специалистам по истории химии удалось без особых проблем прорваться через поток метафор и расшифровать методику благодаря тому, что известно – под псевдонимом «Филалетес» выступал алхимик (а может уже и химик) Джордж Старки. Старки родился в 1628 году в британской колонии на Бермудских островах и в возрасте 18 лет окончил Гарвард, тогда еще бывший Британским университетом. Сохранились источники, в которых Старки описывает тот же самый процесс получения сурьмы «нормальным» химическим языком того времени, не прибегая к метафорам и называя вещества своими именами. Эти источники – и дожившие до наших дней лабораторные журналы, и письма Старки своему ученику и другу Роберту Бойлю. Наследие Старки-Филалетеса и других его коллег позволяет с уверенностью говорить о том, что алхимики использовали два стиля научного письма. Записи, изобиловавшие метафорами, в которых водились огненные драконы, светлые огнегривые львы и прочие исполненные очей волы, предназначались для публикаций, которые может прочитать неосведомлённая публика, в то время как более строгое и конкретное описание экспериментов использовалось в узком кругу собратьев по «тайному ремеслу». То, что до наших дней дошло больше напечатанных работ с метафорическими текстами, чем личной переписки и лабораторных журналов алхимиков, позволяющих расшифровать все эти метафоры и шифры, в конечном итоге и породило устойчивый миф о том, что такое экстравагантное описание алхимических практик в ряде случаев было даже не описанием экспериментов, а попыткой поделиться с широкой публикой своими видениями, которые порождала не всегда здоровая психика. Тем не менее, это не что иное, как миф, а алхимические метафоры и образы вполне можно считать одним из способов защиты интеллектуальной собственности, реализованных в средневековой Европе.



Дальнейшее развитие метафорического языка алхимиков привело к созданию аллегорий, которые передавались не только словами, но и в зрительных образах.

Известно немало рисунков и гравюр 15-16 веков, изображающих некие таинственные события или действа, которые, как полагается, содержат в себе тайное послание, расшифровка которого позволит понять, какие практические действия нужно предпринять. Эти картинки кажутся еще более далекими от химии, чем тексты алхимиков, что в нашем современном представлении позволяет считать алхимиков еще более странными, чем мы их считаем, если это возможно. Однако не нужно забывать, что не стоит пытаться понимать алхимиков в отрыве от их времени – эпохи Возрождения, в которую изобразительное искусство и изображение становится важным средством передачи информации (заметим, что в отличие от нашей эпохи всеобщей грамотности – средством передачи информации, сравнимым по важности с текстом). Некоторые работы историков химии, вплотную поработавших с аллегорическими изображениями, говорят, что бывает, что изобразительное искусство алхимиков зачастую описывает очень и очень смелые эксперименты.



Одним из наиболее известных алхимических образов является «Двенадцать Ключей» – двенадцать аллегорических эмблем, создание которых связывают с именем Василия Валентина, возможно – монаха-бенедектинца, жившего в пятнадцатом веке. Однако, более вероятно, что «Двенадцать Ключей» является сочинением анонимного (или неустановленного) автора, написанным где-то в 1600 году. Идея, которая заложена в «Двенадцати Ключах», заключается в том, что, если читатель может расшифровать идеи, заложенные в образах и в сопровождающих каждый из этих образов коротких рассказах, он сможет получить философский камень. Третий Ключ представляется как главный, критически важный этап процесса получения Камня. Первый и второй Ключи, в свою очередь, можно интерпретировать как описание очистки золота и получения кислоты, обладающей высокой коррозионной способностью, похожей по составу на царскую водку. Именно эти два реагента предполагалось использовать в третьем ключе.



Текст, описывающий третий ключ, гласит, что «…царя нужно покорить водой, бешено потрясти и скрыть с глаз…». Возможно, что здесь речь идет о методе растворения золота (царя) в кислоте (воде) с получением прозрачного раствора, в котором золото становится «невидимым» благодаря образованию трихлорида золота (AuCl3). Однако в этот раз видимая часть золота снова должна снова предстать перед глазами алхимика. Таким образом, невидимое (растворённое) золото должно выть выделено в исходной видимой (нерастворимой) форме. Самый простой способ добиться этого – упарить полученный раствор, и в результате упаривания термически неустойчивый хлорид золота быстро разложится с образованием золота. Кажется, что человек, следующий этим советам, будет ходить по кругу, который не ведет никуда. Однако дальнейшие инструкции Валентина становятся ещё более запутанными:


Третий из двенадцати ключей Василия Валентина


…затем вознеси [Царя] так, что его блеск сможет затмить все звёзды на небосводе …эта багряная роза наших мастеров и кровь красного дракона… Одари его способностью летать как птица, затем петух поглотит лису, утонет в воде и будет оживлён в огне и в ответ будет съеден лисой, так что одинаковое и разное станет похожим.



На гравюре читатель может видеть дракона на переднем плане, а на заднем фоне и странную пару – лису и петуха, взаимно поедающих друг друга. Можно ли найти на этом рисунке какой-то химический смысл? Термины «вознесение» и «способность летать» означают, что какое-то соединение золота должно подвергнуться возгонке, но такой процесс вряд ли может существовать в принципе, и все заявления авторов-алхимиков о том, что им удалось возогнать золото, в то время воспринимались смешными и невероятными. Однако, как показало воспроизведение методики уже в новое время, алхимики были правы. Дело в том, что если кислый раствор трихлорида золота возгонять в реторте, металлическое золото – «изрыгнутый труп царя» – остается на дне реторты. Однако если это золото немедленно залить свежей порцией царской водки, отогнать жидкость до сухого остатка, повторив эту процедуру несколько раз, через некоторое время на носике реторты сконденсируются рубиново-красные кристаллы трихлорида золота.



«Секрет» алхимиков в том, что самый первый экспериментатор, которому удалось наблюдать такой процесс, скорее всего, быстро повторял процессы растворения золота и отгонки жидкости, в результате чего объем реторты заполнялся хлором, выделяющимся в результате разложения трихлорида золота. Экспериментатору-алхимику удалось найти условия (в первую очередь это атмосфера хлора, вытеснившего из реторты воздух), в которых соль золота оказалась способной к возгонке при относительно умеренной температуре. В 1895 году этот процесс был заново открыт, и наблюдавшимся явлениям было дано химически грамотное объяснение; произошло это через три сотни лет после первого описания процесса Василием Валентином и независимо от его работ.

Следует отметить, что и в наше время возгонка термически неустойчивых солей золота является трудоёмкой операцией, даже в том случае, если нам приходят на помощь современные технологии и уже известная информация о химизме протекающих процессов. Можно представить, насколько велико было экспериментальное умение алхимика, который проводил эти эксперименты четыреста лет назад, не имея доступа к термически и химически стойкой посуде, нагревая её на угольной жаровне. Представьте, что Василий Валентин мог измерять температуру реакционной смеси, только на ощупь – трогая реторту, а регулировать эту температуру, только открывая и закрывая вьюшки печи, тем самым обеспечивая или блокируя доступ воздуха. Нет смысла оспаривать тот факт, что Валентин был чрезвычайно опытный и терпеливый экспериментатор – я бы с удовольствием взял бы в лабораторию такого сотрудника, конечно, при условии, что он бы согласился представлять отчеты о работе в виде привычных химикам XXI века протоколов, а не в виде метафор, аллегорий и загадочных картинок. С другой стороны, картинки, аналогичные «Ключам», вполне могли бы украсить презентацию научного доклада и вывести из полусонного состояния слушателей на какой-либо конференции.



Таким образом, как бы не старались некоторые авторы, популярно излагающие историю химии и отсчитывающие ее с Роберта Бойля или Антуана Лавуазье, алхимия не являлась исключительно средством перераспределения денежных масс Средневековой Европы от богатых, но менее образованных, к бедным, но способным говорить непонятные слова и хорошо выступать с презентацией стартапа. Алхимию вполне можно считать системой знаний и способом познания окружающего мира, пришедшим на смену натурфилософии античности. Конечно же, алхимики не тратили все свое время исключительно на поиски философского камня и способов превращения свинца или ртути в золото – именно они открыли ряд химических элементов. Во времена Средневековья и Возрождения алхимики разработали немало настоящих и поэтому более полезных, чем философский камень, материалов – сплавы, твердые и жидкие красители, косметические и лекарственные средства и т. д. Алхимическими практиками занимались князья мира и князья церкви, лекари и профессора, ювелиры и пивовары, палачи и маркитанты. Несмотря на то, что алхимики старались сохранить свое знание в тайне (а может именно благодаря этому) алхимические практики поражали воображение многих. Алхимические воззрения оставили свой след в изобразительном искусстве, прозаических и поэтических литературных памятниках. Прежде всего, мы должны помнить, что заполненные дымом и испарениями «лаборатории» алхимиков, ни одна из которых не прошла бы аттестацию по правилам современной охраны труда, стали «детской площадкой», на которой методом проб и ошибок, иногда набивая синяки и шишки, делала свои первые шаги наука, которую сейчас мы знаем, как химию.


1614. Обеденные весы Санторио

В середине шестнадцатого века наука начала длинный путь ухода от идей Аристотеля, через века продолжавшего учить, что всё на свете является соединением материи и формы, к современным научным идеям структурированности материи. Чаще всего мы считаем, что сформировавшаяся уже через тысячи лет после Демокрита и Левкиппа мысль о том, что материя состоит из частиц небольшого размера – заслуга учёных второй половины семнадцатого или даже начала восемнадцатого века: Рене Декарта, Галилео Галилея, Исаака Ньютона.



Однако на самом деле предпосылки к этой мысли, да и сама мысль появились ранее, главным образом под влиянием открытий, сделанных в области медицины. Одним из первых людей, рискнувших посмотреть на мир не глазами Аристотеля, был итальянский лекарь Санторио Санторио, которого, правда, в большей степени вспоминают как человека, который первым начал изучать обмен веществ. В 1587 году Санторио в возрасте 26 лет закончил итальянский университет города Падуя, работал в Венеции, и почти полтора десятка лет находился в длительной зарубежной поездке: 14 лет он занимал должность профессора Краковского университета и по совместительству – придворного лекаря польского короля Сигизмунда III (того самого, который пытался посадить на московский престол сначала трёх Лжедмитриев, а потом и своего сына Владислава). В 1611 году Санторио вернулся в Италию, где возглавил кафедру теоретической медицины в Падуе. Санторио разработал хирургические инструменты для трахеотомии и для извлечения камней из мочевого пузыря, ванну особой конструкции для больных и т. д.



Однако наибольшую известность Санторио принесла опубликованная в Венеции в 1614 году книга «О медицине равновесия» («De statica medicina»), в которой обобщалась собранная им информация об обмене веществ. Для написания этой книги Санторио 30 лет регулярно взвешивал себя до и после приёма пищи, сна, работы, секса, натощак, после питья и выделения мочи. Эти взвешивания помогли ему осознать, что тело само по себе является живой лабораторией, которая в процессах пищеварения разделяет принятую пищу и выпитые напитки на питательные вещества и то, что выводится из организма с мочой или фекалиями. Санторио также обнаружил, что большая часть пищи, которую он поглощал, утрачивалась в результате процесса, который он назвал «незаметным испарением». В связи с экспериментами по измерению массы тела Санторио изобрел прибор – весы, одной «чашкой» которых был стол с явствами, а другой – кресло, на котором сидел человек питающийся. Назначение устройства было таково: весы были настроены так, что по мере приема пищи и ее перехода с обеденного стола в организм питавшегося расстояние между обедающим человеком и столом медленно увеличивалось, и, когда, человек съедал «норму», массу которой он сам определял, настраивая «обеденные весы», расстояние между питающимся и пищей уже было такое, что сидящий человек уже не мог дотянуться до еды (к сожалению, высота потолков в наших современных типовых квартирах не позволяют использовать что-то подобное в наши дни). Прибор Санторио был популярен среди многих ученых и аристократов 16–17 веков, стремившихся не переедать и контролировать массу тела.



Книга Санторио изменила медицину Европы, да что там медицину – все научные воззрения того времени. В ближайшие сто лет книгу перевели на все европейские языки, она выдержала 84 переиздания. Подходы с измерением масс исходных веществ и масс продуктов реакции наряду с поисками того, куда же девается то самое незаметное испарение, но не из организма, а более простой химической системы – реторты, легли в основу экспериментов Ломоносова и Лавуазье. К сожалению, одну вещь (самую главную, пожалуй, для современной химии) учёная общественность того времени пропустила или просто не захотела заметить: Санторио упоминал, что эманации незаметного испарения выходят из тела в виде маленьких тел или мельчайших частиц (manantia corpuscula, particulae minimae).



Другие его работы позволяют говорить, что Санторио придерживался корпускулярной теории строения материи еще за 20 лет до того, как свои мысли на эту тему излагал Галилей (и задолго до того, как это стало мейнстримом). Идея Санторио была в том, что материя представляет собой поры и пустоты, которые могли заполняться частицами-корпускулами. Он предполагал, что свойства тел и тканей зависят от положения, ориентации и количества таких мельчайших частиц, подтверждая свою идею экспериментами. Санторио готовил пигменты различных цветов из минералов и вытяжек из растений, варил стекло, смешивал лекарственные снадобья. Большая часть его трудов, связанных именно с корпускулярным строением материи, изложена в книге «Methodus vitandorum errorum omnium qui in arte medica contingunt libri» (Способы избежать всех ошибок в медицине), напечатанной в Венеции в 1603 году. Санторио полагал, что свойства материалов зависят от положения корпускул в пространстве. Не менее важно, что он не считал это расположение делом случая: он полагал, что этим положением можно управлять, а изменение положения частиц могло приводить к изменениям свойства материала и вещества – не правда ли, похоже на главную с точки зрения химии концепцию строение-свойства-применение, которая в своём современном виде начинает отсчитываться с теории химического строения А. М. Бутлерова. Взгляды Санторио не обсуждались исключительно в узком кругу философов Падуи и Венеции – его работы изучали Галилео Галилей, Роберт Бойль и Готтфрид Лейбниц, которые использовали доводы Санторио для разработки своих собственных подходов к корпускуляризму. Именно с трудов Санторио появляется идея отношения к телу, как к живой лаборатории, тем более что для изучения этой лаборатории Санторио разработал измерительные приборы – термометр (вопреки довольно популярному заблуждению, которое растиражировано в сети – не в сотрудничестве с Галилеем, а независимо от него), гигрометр и пульсометр. Подходы Санторио оказались не менее важными для революционных изменений в трактовке естественнонаучных законов, чем механика Галилея, и удивительно, что до сих пор о роли этого человека Возрождения в развитии науки говорится меньше, чем он заслуживает.


1643. Барометр Торричелли

Можно утверждать, что Эванджелиста Торричелли является одним из тех учёных Эпохи Возрождения, которым не очень повезло с узнаваемостью в наше время – школьная программа по естественным наукам не уделяет ему достаточного внимания. Если брать химию, то Торричелли обычно вспоминают в связи с тем, что его именем названа единица измерения давления (1 Торр = = 1 мм рт. ст., хотя, честно говоря, преимущественно это знание бывает востребовано только участниками предметных олимпиад, решающими задачи на газовые законы).



Учебник физики, конечно, рассказывает о Торричелли как об изобретателе прибора, измеряющего давление, однако, учебник физики оставляет Торричелли в тени своего именитого наставника и предшественника на кафедре математики и философии Флорентийского университета – Галилео Галилея. Галилей считается символом науки эпохи Возрождения в первую очередь из-за судебного процесса, который, как многократно подчёркивалось, окончательно подорвал авторитет католической церкви. Тем не менее, семнадцатый век знал примеры научного поиска и научных открытий, не приводивших к конфликту с церковными и светскими властями.



В 1630-х годах инженеры и архитекторы Италии столкнулись с неожиданной проблемой, которой, казалось, не было решения: все попытки закачать воду из рек и колодцев по системе труб оканчивались неудачей в том случае, если высота, на которую нужно было подать воду, была больше 18 браччий (браччия – единица расстояния, принятая в то время на территории Апениннского полуострова, 18 браччий составляет примерно 11 метров). Попытавшийся приложить свой разум к решению этой задачи Галилей, как оказалось потом, ошибся. По его мнению, невозможность подъёма воды на определённую высоту была связана с весом воды – точно также как слишком длинная верёвка должна разрываться под воздействием своего веса, столб воды, начиная с определенной длины и, как следствие, веса, тоже должен разрушиться. Такое предположение приводило к умозаключению, что столб более плотной ртути должен разорваться на меньшей высоте.

Где-то в 1640-м году доводы Галилея решил проверить Гаспаро Берти. На стене римского дворца он закрепил систему из свинцовых труб длиной 21 браччий. В верхней части водопровода Берти был размещён стеклянный сосуд колоколообразной формы, также сверху и снизу устройство было снабжено стопорными кранами. Система была заполнена водой до верхнего крана, после чего верхний кран закрыли, а нижний открыли. Естественно, через открытый нижний отсек трубы хлынула вода, но, вопреки ожиданиям большинства свидетелей (а может и устроителей) эксперимента, вода вылилась не вся, через некоторое время интенсивность потока ослабела, а в конце концов и просто остановилась. Какова была высота оставшегося столба? Правильно – тем самым 18 браччиям. Возник вопрос – насколько пуст отсек, располагающийся в верхнем отсеке системы? Пустота там или не пустота? Вакуум или не вакуум? Предположение о пустоте противоречило канонам естествознания того времени, опиравшимся на идеи Аристотеля о невозможности существования вакуума и догматам о вездесущности и всемогуществе Бога. Более того – результаты эксперимента не согласовывались и с доводами Галилея о возможности саморазрыва жидкости под действием своего веса. Находившийся довольно близко к обоснованию возможности существования вакуума Берти умер спустя пару месяцев после эксперимента, но тут в дискуссию о природе эксперимента о столбе жидкости высотой в 18 браччий вступил Эванджелиста Торричелли.



Торричелли родился на Севере Италии в городке Фаенца в 1608 году, в 1627 году он перебрался в Рим. В Вечном Городе Торричелли изучал математику – и самостоятельно, и под руководством Бенедетто Кастелли, друга и ученика Галилео Галилея. Вскоре Торричели и сам начал писать математические трактаты. Именно благодаря одному из таких трактатов – «Трактате о движении» (Trattato del moto) – в 1640 году на Торричелли обратил внимание стареющий Галилей и предложил ему объединить усилия в постижении природы вещей. Торричелли был учёным-энциклопедистом, сочетавшим черты теоретика и практика: он освоил изготовление стеклянных линз для микро– и телескопов и даже усовершенствовал артиллерийский угломер, увеличив тем самым эффективность прицеливания пушек того времени. В 1643 году вместе со своим другом и еще одним учеником Галилея – Винченцо Вивиани – он решил изучить «феномен 18 браччий», доказать существование пустоты и «…создать прибор для изучения перемен в воздухе…». Судя по записям и письмам, «мозговым центром» исследовательского тандема был Торричелли, который планировал эксперименты и проектировал конструкцию прибора, а Вивиани занимался стеклодувной работой и собственно выполнял запланированные эксперименты. Сейчас таким разделением труда никого не удивишь – это обычные отношения между научным руководителем научной работы и её исполнителем. Для того же времени такое разделение труда «один думает – другой делает» не было обычным: как правило, в те времена научный руководитель и наставник молодого естествоиспытателя прекращал лично участвовать в экспериментах только когда уже не мог делать это по физическим причинам – терял зрение и т. д.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6