Аркадий Курамшин.

Жизнь замечательных веществ



скачать книгу бесплатно

0. Введение

0.1. Предисловие от автора

Когда я учился в школе, в кабинете химии друг напротив друга висело два плаката с классическими для позднесоветских кабинетов химии цитатами. Одна из них висела рядом с портретом М. В. Ломоносова: «Широко распростирает химия руки свои в дела человеческие… Куда ни посмотрим, куда ни оглянемся, везде обращаются перед очами нашими успехи её прилежания», а поверх текста второй суровыми глазами на наш класс смотрел первый пролетарский писатель М. Горький: «Химия – это область чудес, в ней скрыто счастье человечества, величайшие завоевания разума будут сделаны именно в этой области».


С момента окончания школы прошло три десятка лет, за которые изменилось многое: химию в школах стали изучать меньше, к первому пролетарскому писателю стали относиться без пиетета и придыхания. В итоге за эти годы мы пришли к тому, что в наши дни химия все также продолжает широко распространять свои руки в наши дела, но вот людей, которые склонны считать её «областью чудес», стало гораздо меньше. Как-то так произошло, что химия стала вызывать опасение и страх, расцвёл иррациональный страх перед всем «химическим» – хемофобия.

Приметой времени являются книжки-советы из серии «Как убрать дом без химии», в которых рекомендуется пользоваться содой, уксусом и лимонной кислотой, самыми что ни на есть продуктами крупнотоннажного химического производства (возможно, для некоторых читателей может оказаться неожиданностью, что в наше время лимонную кислоту не получают из лимонов, точно также как и муравьиную кислоту уже давно не получают из муравьев). В Интернете регулярно появляется кто-то, разоблачающий пищевые добавки или дающий советы из серии: «Чем опаснее химическое вещество, тем сложнее его название» (по логике таких советчиков хлор гораздо менее опасен, чем ДНК, полное название которой «дезоксирибонуклеиновая кислота»). В конечном итоге и в российской, и в международной инфосфере мы можем столкнуться с огромным количеством легенд и страшных историй на ночь, связанных с химией.



Бывает, что коллеги, которым «не за себя, а за химию обидно», высмеивают подобные нелепости, запуская «контрлегенды». Чего стоит одна мистификация с дигидрогена моноксидом – использование незнакомого широкой публике названия воды и описание её фатальных (но при этом вполне рельных) свойств в попытке убедить общественность в необходимости тщательной регуляции или даже полного запрета на использование этого вещества. И хотя шутка зашла далеко – первое упоминание о злокозненном дигидрогена моноксиде датируется 1990 годом, а в 1998 году, несмотря на большое количество промежуточных разоблачений, член австралийского парламента объявил о начале кампании по запрещению дигидрогена моноксида на международном уровне, – людей, которых пугает «дигидрогена моноксид», можно встретить где угодно.



Однако настоящие истории, связанные с открытием химических веществ, обнаружением их полезных свойств, просто рассказы о веществах гораздо интереснее придуманных (и чаще всего неправильных) легенд.

Мне всегда казалось, что такие рассказы смогут избавить тех, кто их прочтет, от иррационального страха перед всем химическим, заинтересовать химией и сделать так, чтобы все больше и больше людей (причём не обязательно тех, чья профессия так или иначе связана с химией) перестали бы воспринимать вещества, полученные с помощью химического синтеза, как что-то опасное, и приблизились к горьковскому восприятию химии. Идеальным конечно же было бы всеобщее отношение к химии как к «области чудес», но будем реалистами – к сожалению, даже среди моих коллег есть те, кто опасается химии гораздо больше, чем следовало бы (справедливости ради стоит отметить, что работать в химическом институте и совсем не бояться химии – тоже не самый лучший способ поведения).

Можно сказать, что материал для этой книги подбирался, обрабатывался и писался более 10 лет. С 2006 года я начал ежедневно следить за новостями в химии и областях, с ней связанных, а наиболее интересные факты и открытия адаптировать для краткого рассказа о них в Сети, обеспечивая работу раздела «Новости химии» сайта www.chemport.ru, в 2012 году появилось название этой книги «Жизнь замечательных веществ». Тогда это был тэг для рассказов об известных и не очень известных веществах на страницах Живого Журнала (в 2013 году цикл рассказов о веществах, объединенных этим названием, даже занял первое место в конкурсе научных блогов, организованном интернет-изданием «Наука и технологии России – STRF.ru»). С 2016 года я регулярно сотрудничаю с журналом «Химия и жизнь. XXI век», где ежемесячно освещаю новости химии в разделе «Хемоскоп» и пишу рассказы и про замечательные вещества, и про не менее замечательных ученых, открывших эти вещества. Материалы, вошедшие в эту книгу, были написаны в период с 2006 по 2017 год, хотя, конечно, большая их часть датируется последними двумя-тремя годами.



Надеюсь, что читателю понравится читать рассказы о жизни замечательных веществ хотя бы так, как мне нравилось их писать, подбирая материал, отбирая его по различным источникам. Ну а наилучшей наградой, которую я бы мог заслужить, станет то, что читатели этой книги заинтересуются химией и она не будет последней научно-популярной книгой (а может, и серьезной научной), которая будет ими прочитана. Всё же я искренне вместе с М. Горьким считаю, что химия – это область чудес, а настоящие замечательные открытия в области химии нас ещё ожидают впереди.

0.2. Случайность или непознанная закономерность?

Химия – наука экспериментальная, и без корректно поставленного эксперимента, проверяющего теоретические догадки учёного, представить её невозможно. Иногда эксперимент удается (и это хорошо), иногда – не удается (это, конечно, нехорошо, но без этого никуда не денешься), а иногда (и это самый интересный случай) эксперимент даёт нам замечательные, но неожиданные результаты.


Если бы в результате экспериментов мы получали то, что планируем, в принципе, экспериментальная наука, наверное, была бы и не нужна. Но нам не всегда удается предугадать результаты эксперимента, что, с одной стороны, плохо – бывает жаль потраченных времени и усилий, а с другой, иногда и хорошо – опытный экспериментатор может обернуть любую конфузию в викторию, и даже если что-то пошло не так или даже кто-то что-то пролил, облизал испачканные реагентом пальцы или просто вдохнул пары реагента – есть ещё шанс получить из этого выгоду в виде нового знания или полезного вещества. Особенно часто ситуация, описанная в бессмертной комедии А. С. Грибоедова: «Шёл в комнату, попал в другую…» – встречалась в те времена, когда у химии не было теоретической базы (точнее говоря, база-то была, но была она несколько своеобразной), и сначала алхимики, а потом и химики вели свой научный поиск методом проб и ошибок.

Например, открытие углеродных нанотрубок уже нельзя полноправно считать достижением XXI века. Оказывается, их открытие было предвосхищено средневековыми арабскими оружейниками, их Дамасские клинки, показавшие крестоносцам истинное значение выражения «холодная сталь», обладали своими уникальными свойствами из-за армирующих материал клинка углеродных нанотрубок.



Петер Пауфлер (Peter Paufler) и его коллеги из Дрезденского технического университета обнаружили углеродные нанотрубки в дамасской сабле 17 века при изучении ее микроструктуры (Nature, 2006, 444, 286). Наиболее интригующим являлось то, что нанотрубки были инкапсулированы в линейные структуры, образованные карбидом железа. По мнению учёных, такая организация материала клинка могла обуславливать механическую прочность и остроту Дамасских мечей.

Европейцы приписывали Дамасским клинкам волшебные свойства. Только волшебством можно было объяснить столь острую заточку меча, способного разрезать шелковый платок, просто падающий на лезвие, и одновременно способность клинка разрубать оружие и доспехи из менее качественной стали, не теряя своей остроты.

Проблема, с которой сталкивались средневековые оружейники, заключалась в том, как получить одновременно жёсткую и ковкую сталь. Большое количество углерода сделает сталь твердой, но хрупкой, малое содержание углерода приведет к образованию более ковкого материала, который, однако, будет настолько мягок, что не сможет образовать жёсткой режущей кромки при заточке. Клинки дамасской стали ковали из небольших по размеру слитков железа, содержавших 1,6–1,7 % углерода. Эти слитки [их еще называют вутц (wootz)] производились в Индии, экспортировались в Дамаск, где опытные оружейники превращали их в клинки.



Сканирующий электронный микроскоп позволяет разглядеть нанотрубки в дамасском клинке (рисунок из Nature, 2006, 444, 286).


Сталь, содержащая такое количество углерода, обычно образует пластины цементита (Fe3C), который в свою очередь делает сталь ломкой. Однако в ходе выплавки дамасской стали при температуре около 800 градусов Цельсия в исходный материал вносили небольшое количество добавок, представляющих собой элементы первого ряда переходных металлов (например: ванадий, хром, марганец, кобальт и никель), вольфрам и некоторые редкоземельные элементы. Совместное и одновременное внесение этих добавок в сталь приводило к тому, что отдельные пластины цементита объединялись, формируя его нановолокна. Все это давало клинкам прочность, ковкость и характерный волнообразный рисунок микроструктуры. Искусство ковки дамасской стали было потеряно к XVIII веку благодаря истощению запасов сырьевой базы как для железосодержащих руд, так и для легирующих добавок.



Ранее проводимые исследования микроструктуры дамасской стали показывали на наличие нановолокон цементита в материале. Сейчас группа Пауфлера обнаружила наличие нанотрубок в стали. Это открытие было сделано следующим образом: небольшой образец материала клинка был корродирован действием плавиковой кислоты, после чего материал изучался с помощью сканирующего электронного микроскопа с высоким разрешением.



Нанотрубки могли образоваться в результате добавок некоторых растительных ингредиентов ещё на стадии образования вутца. Ученые предполагают, что образованию углеродных нанотрубок могла способствовать древесина Cassia auriculata и листья Coltropis gigantean. Таким образом, эмпирически оптимизируя процесс выплавки стали и ковки клинка, средневековые мастера получили наноматериалы ещё несколько сотен лет назад, правда, естественно, ответить на вопрос: «Благодаря чему клинок, скованный на Востоке, превосходит свойствами клинок, скованный на Западе», – металлурги и алхимики и Саладина, и европейских правителей не могли, и переход на древесный уголь из других сортов древесины привёл в конечном итоге к «утере» секрета дамасской стали.

Пожалуй, учитывая все обстоятельства, самый приятный из всех химических сюрпризов произошел в 1669 году, когда алхимик Хенниг Бранд попытался получить золото, нагревая мочу с песком.



Спрашивается – зачем он взял такие неожиданные исходные вещества для трансмутации? Ответ прост: принцип подобия, который использовали алхимики, в те времена касался не только растворимости, а чуть более, чем всего – запахов, вкуса, внешнего вида. Исходя из принципа подобия, теоретической базой для подбора условий проведения эксперимента послужило то, что и золото, и моча отличаются одинаковым цветом. Конечно же, Хенниг Бранд не смог выпарить золото из мочи, но в историю химии вошел как первооткрыватель нового элемента – фосфора.


Открытие удалось сделать благодаря тому, что помимо мочевины и мочевой кислоты моча содержит метафосфат натрия, а при высокой температуре её органические компоненты обугливаются до углерода, который при нагревании может восстановить фосфор из фосфата. Бранд хранил свой метод получения нового вещества в тайне (из-за свечения считая его облегчённой версией философского камня), но в 1680 году независимо от него Роберт Бойль опубликовал рецепт получения фосфора по такой же методике – при нагревании мочи с песком. Специалисты по химии фосфора и фосфорорганических соединений до сих пор уверены в том, что главное достижение алхимии – тот самый эксперимент Бранда и позднее Бойля, который позволил открыть новый (тогда) и уникальный (до настоящего времени) химический элемент.

В наши дни фосфор производится путем восстановления фосфатов (например, фосфатов кальция – апатитов) с песком и коксом в электрической печи при температуре около 1200 °C. Основной компонент песка – диоксид кремния – вступает в реакцию с фосфатом, образуя оксид фосфора P2O5, ну а входящий в состав кокса углерод восстанавливает P2O5 до элементарного фосфора.


Свою роль случайности сыграли и при разработке химических процессов, связанных с фотографией. К 1835 году француз Луи Дагер разработал такое светочувствительное устройство, как покрытая серебром и обработанная парами йода медная пластина. Дагер подверг пластинку действию света и положил её на шкаф, а когда через некоторое время он вернулся к ней, на пластинке проявилось изображение. Расследование показало, что в шкафу лежал разбитый ртутный термометр, и пары ртути проявили изображение.



В 1837 году Дагер запатентовал фотографическую систему, получившую название «дагеротип», для получения изображения с помощью которой необходимо было подвергнуть металлическую пластинку воздействию света, обработать пластинку парами ртути и закрепить его соленой водой. Метод Дагера, ставший началом современной фотографии, был небезопасен для здоровья, долог и трудоемок, но по тем временам дагеротипы были прорывом в области создания изображений.


Благодаря счастливой случайности был открыт и состав нержавеющей стали. Примерно в 1910 году британский металлург Гарри Брирли (Harry Brearley) пытался создать новый сплав для ружейных стволов, способный выдержать стрельбу патронами большей мощности, однако каждый из образцов полученных сплавов проваливал тесты, не обладая достаточной прочностью, и Брирли свалил все неудачные образцы в сыром углу своей лаборатории, где те лежали и ржавели.



В один прекрасный день, глядя на плоды своих неудачных экспериментов, Брирли с удивлением обнаружил, что один образец так и не был тронут ржавчиной. Металлург взял этот кусок сплава и проанализировал его – это был первый образец нержавеющей стали. Обратив конфузию в викторию, Брирли, не получивший господдержки на производство оружейной стали, быстро сориентировался и скооперировался с производителем посуды, получив подряд на изготовление материала для столовых приборов. В наши дни мы настолько привыкли к столовым приборам из нержавейки, что даже не можем оценить, каких огромных усилий и какого везения стоило Брирли его изобретение.

Хотя к концу ХIХ века химия накопила достаточное количество теорий и обобщений, чтобы посматривать на своего предка – алхимию – с легким пренебрежением и чувством собственного превосходства, случайные открытия не прекратились, а можно даже сказать, что участились.

Так, до целенаправленной разработки и открытия компанией NutraSweet подсластителя неотама (Е-961) в 2002 году каждый из подсластителей-заменителей сахара находили неожиданно – если кто-то случайно пробовал на вкус какое-то вещество.



Неотам


Очевидно, что первооткрывателем первого сахарозаменителя был какой-то римский винодел, обнаруживший сладкий вкус белых кристаллов, образующихся в результате воздействия на свинец уксуса. Однако первый в истории сахарозаменитель – ацетат свинца или свинцовый сахар – сыграл дурную роль для Рима: римляне не знали о токсичности и тератогенности соединений свинца (собственно говоря, они не имели и понятия о том, что такое «тератогенность»), и помимо социальных процессов Рим подкосила в том числе и практика сластить вино свинцовым сахаром, вызывавшая хронические отравления свинцом.



Сахарин


Практика обнаружения подсластителей «на вкус» была продолжена в 19 веке Константином Фальбергом, тогда работавшим в лаборатории Айры Ремзена. После долгого дня, проведенного в лаборатории над синтезом производных толуола, Фальберг отправился обедать, не помыв руки.



Взяв хлеб этими самыми немытыми руками, Фальберг обнаружил, что этот хлеб необычно сладок на вкус, и связал это с остатками вещества на своих руках. Вместе с Ремзеном Фальберг очистил сладкое вещество, которым были загрязнены его руки, и написал статью «Об окислении орто-толуолсульфонимида». Спустя несколько лет Фальберг оптимизировал условия синтеза, запатентовал его и начал промышленное производство сахарина, уже не включив Ремзена в соавторы и патентообладатели. Именно с того момента началась история сахарина, который известен ещё и тем, что это первый продукт, продававшийся компанией «Монсанто».



Синтез сахарина по Ремзену – Фальбергу



Аспартам


Спустя почти столетие почти по такому же сценарию произошло открытие очередного сахарозаменителя – аспартама, сделанное Джеймсом Шлаттером.



В процессе синтеза гормона гастрина содержимое колбы с метанольным раствором аспартама пролилось Шлаттеру на руки, однако он как ни в чем не бывало продолжил работу. Чуть позже ему потребовался кусочек бумаги. Чтобы подхватить кусочек бумаги, Шлаттер облизнул пальцы и почувствовал сладкий вкус. Первая мысль Шлаттера была о том, что ему на руки попал сахар, однако он быстро сообразил, что дело в аспартаме.



Сукралоза


Ну и совсем уже анекдотический случай произошел при обнаружении сукралозы. Аспирант Шашикант Пхандис (Shashikant Phadnis) получил хлорированную сахарозу в рамках проекта по разработке новых пестицидов, и его научный руководитель Лесли Хью (Leslie Hough) дал ему задание протестировать препарат (test), однако шотландский акцент Хью и неродной для Пхандиса английский привели к тому, что аспирант понял, что шеф требует от него попробовать новое вещество на вкус (taste), что он тут же и сделал, сунув небольшую порцию порошка прямо в рот, и сообщил шефу о сладком вкусе. На следующее утро, убедившись в том, что за ночь с аспирантом ничего не случилось, Хью и сам добавил сукралозу в кофе.

Вообще химики ничуть не отстают от врачей-подвижников, которые, чтобы доказать безопасность и эффективность вакцинации, в первую очередь делали прививки от смертельных болезней. Даже в ХХ веке, спустя полтора столетия после смерти Шееле, описавшего вкус синильной кислоты, находились люди, испытывавшие результаты своих экспериментов на себе.


Одним из самых известных химиков, ставивших эксперименты на себе, был американский химик Александр Шульгин, фармаколог, публицист и разработчик многих психоактивных веществ. Неоднократно применяя синтезированные им же вещества, в том числе и для «расслабления», Шульгин известен многим химикам в первую очередь из-за неоднозначности оценки своих взглядов на жизнь, химию и отношение к тайне публикации методик синтеза некоторых препаратов (синтетический протокол, описывавший синтез любого психоактивного вещества, полученного в своей лаборатории, Шульгин тут же делал достоянием общественности).



Имея лицензию американского агентства DEA на исследование психоактивных веществ и свободу в выборе направления исследований (в конечном итоге она была отозвана от греха подальше), Шульгин проводил независимые исследования в области контролирующих сознание веществ, потенциально применяемых в психотерапии, сообщая о результатах экспериментов над собой. Испытание нового препарата начиналось с небольших доз, в 10–50 раз меньших, чем эффективная доза уже известного препарата, наиболее близкого по строению синтезированному, потом доза увеличивалась. Все это делалось без мероприятий, которые кажутся обязательными и естественными для каждого химика сейчас: изучение цитотоксичности, опыты на животных, определение фармакокинетики. В конечном итоге, по версии Шульгина, эффективная доза нового препарата определялась как доза, после которой изменённое сознание уже прекращало меняться. Для выражения активности Шульгин даже придумал специальную систему измерений – мескалиновые единицы, сравнивая «расширители сознания» с известным психоделиком – мескалином.



Лабораторные журналы Шульгина подтверждают, что он был опытным и умелым химиком-синтетиком, но отсутствие ученой степени и какой-либо официальной должности в вузе или отделе R&D фирмы так и не позволило ему получить при жизни признание среди коллег-профессионалов, хотя люди, увлекающиеся психофармакологией, иногда называют в шутку Шульгина «папой».



Из книг Шульгина, которые можно считать автобиографическими – PiHKAL («Phenethylamines I Have Known And Loved») и TiHKAL («Tryptamines I Have Known And Loved»), становится однозначно понятно, что Шульгин компенсировал галлюциногенными эффектами тяжесть и сложность работы в лаборатории, и проверка новых рецептур на себе скорее была для него в радость.

К сожалению, история химии ХХ века знает и другого ученого, экспериментировавшего на себе, судьба которого гораздо более печальна, – Гельмута Фельбингера (Helmut H. Velbinger). В начале ХХ века Фельбингер посвятил свою научную карьеру исследованию нейротоксичных инсектицидов, проводя исследования их токсикологии на позвоночных, включая млекопитающих. С помощью экспериментов с хлорорганическими пестицидами (включая ДДТ) на себе Фельбингер пытался установить безопасные дозировки применения этих веществ как для защиты урожая, так и по той причине, что ДДТ и его аналоги в 1940-х годах изучались в том числе и как потенциальные препараты для химиотерапии. Первоначальная дозировка инсектицидов для испытания подбиралась на основе экспериментов с животными, а также окончившихся без последствий примеров случайного контакта сельскохозяйственных рабочих с инсектицидами. В конечном итоге Фельбингер установил на себе, что минимальное однократное воздействие ДДТ на организм человека, которое не приводит к токсичному поражению, составляет 10–12 мг/кг. В этих экспериментах отсутствие токсичного воздействия определялось не по уровню самочувствия, как в экспериментах Шульгина, а по результатам анализа крови и мочи. Экспериментируя на себе, Фельбингер также установил дозы ДДТ и пестицидов, безопасные для многократного воздействия, возможно, смог бы определить и другие свойства веществ, но в возрасте 33 лет умер от слишком частых экспериментов на себе.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6

Поделиться ссылкой на выделенное