banner banner banner
В глубинах небесного океана. Научно-фантастическое рассуждение
В глубинах небесного океана. Научно-фантастическое рассуждение
Оценить:
Рейтинг: 0

Полная версия:

В глубинах небесного океана. Научно-фантастическое рассуждение

скачать книгу бесплатно


Чтобы понять роль воды в процессе формирования молодой Луны, ван Вестренен и его коллеги в лабораторных условиях создали небольшие образцы (весом всего 10 миллиграммов) породы, но содержащие все базовые ингредиенты, из которых сформировалась сама Луна. Например, в них содержались в том числе и компоненты, которые положили начало лунному океану из магмы, которая постепенно охлаждалась и затвердевала, формируя конечный облик нашего спутника.»

«Основные компоненты: кремний и кислород, а также некоторая часть из магния, кальция, железа, титана и алюминия», – говорит ван Вестренен, указывая на то, что состав полностью соответствует данным сейсмического анализа, проведенного на поверхности Луны с помощью инструментов, оставленных астронавтами космических миссий «Аполлон».

«Далее команда ван Вестренена с помощью разности температур и давления, соответствующих условиям ранней Луны, симулировала эволюционный процесс лунной геологии. Работа проводилась с помощью научного инструмента, который ученые обычно используют для создания искусственных алмазов. Процесс проводили с наличием воды и ее отсутствием, чтобы посмотреть, как эта особенность повлияет на тип и число формирующихся пород.

Исследователи обнаружили, что только при добавлении в состав воды (в процентном соотношении всего от 0,5 до 1) типы и число получаемых пород полностью соответствовали тем показателям, которые в настоящий момент свойственны самой Луне.

Что более важно, одной из конечных производных состава, в которых была включена вода, явился слой плагиокласа – доминирующего компонента состава лунной коры, который в данном случае составлял бы толщину около 34—43 километров. Это, в свою очередь, соответствует средней толщине реального слоя плагиокласа, данные о котором были получены в 2013 году благодаря орбитальным спутникам.

В случае, когда состав был полностью обезвожен, слой плагиокласа оказался гораздо толще (в реальных условиях он составлял бы 68 километров). Это натолкнуло на предположение о том, что нынешний состав Луны мог получиться только в том случае, если бы в него изначально входила вода.»

«Последние исследования добавляют в копилку аргументов теории о том, что Земля и Луна содержали воду изначально. Однако не все согласны с этим мнением и считают, что вода появилась на этих планетарных объектах уже после их формирования, благодаря астероидам и кометам. Веса первой теории, помимо прочего, добавляют данные 2014 года, когда космический аппарат «Розетта» приблизился к своей основной цели – комете Чурюмова – Герасименко. Полученная информация четко указывала на то, что имеющиеся следы воды на комете обладают комбинациями изотопов, не соответствующих земным.

«Это очередной признак того, что Луна изначально имела воду. Это очень важные данные, так как они дают надежду на то, что глубоко под корой нашего спутника до сих пор могут скрываться водные запасы», – говорит Робин Канап, изучающий природу космических тел в Юго-Западном исследовательском институте Боулдера (США, штат Колорадо).» 5

И снова удивление, снова сломаны привычные шаблоны, думаю стоило бы обратить внимание на то, что «Исследователи обнаружили, что только при добавлении в состав воды (в процентном соотношении всего от 0,5 до 1) типы и число получаемых пород полностью соответствовали тем показателям, которые в настоящий момент свойственны самой Луне.» – это довольно большое соотношение воды для поверхности такого тела как Луна. Интересен еще один вопрос, почему вода находящаяся при формировании в поверхности спутника не уходит в глубь спутника, напомню, что у Луны отсутствует главное магнитное поле (есть только масконы обращенные к Земле), а также есть сейсмозвон при ударе о поверхность как будто о пустое тело (кстати любые кратеры не углубляются ниже отметки 4 км). Это говорит о том, что Луна является как бы прочным пустотелым каркасом. По логике вещей, вода вполне может находиться внутри, в жидком или парообразном состоянии (в этом случае конденсат может оседать на внутренней стороне поверхности спутника). Все знают, о взаимовлиянии планеты и спутника, о приливах и отливах, но еще есть явление приливного трения вызывающее нагревание, которое вполне может обеспечить воду в жидком виде внутри Луны. Эта теория подтверждается исследованием —

«В июле 2008 года группа американских геологов из Института Карнеги и Университета Брауна обнаружила в образцах грунта Луны следы воды, в большом количестве выделявшейся из недр спутникана ранних этапах его существования. Позднее бо?льшая часть этой воды испарилась в космос»

И напоследок еще один факт о нашем спутнике —

«В лунном реголите также очень много кислорода, входящего в состав окислов, причём самым распространённым из последних является диоксид кремния – 42,8%. АМС «Луна-20» доставила грунт из материкового района, «Луна-16» из морского.«3.

Кислород – это воздух для жизни. Его происхождение весьма интересный вопрос.

Марс

«Марс – четвёртая по удалённости от Солнца (после Меркурия, Венеры и Земли) и седьмая по размерам (превосходит по массе и диаметру только Меркурий) планета Солнечной системы. Масса Марса составляет 0,107 массы Земли, объём – 0,151 объёма Земли, а средний линейный диаметр – 0,53 диаметра Земли.

Рельеф Марса обладает многими уникальными чертами. Марсианский потухший вулкан гора Олимп – самая высокая известная гора на планетах Солнечной системы (самая высокая известная гора в Солнечной системе – на астероиде Веста), а долины Маринер – самый крупный известный каньон на планетах (самый большой каньон в Солнечной системе обнаружен на спутнике Плутона – Хароне). Помимо этого, южное и северное полушария планеты радикально отличаются по рельефу; существует гипотеза, что Великая Северная равнина, занимающий 40% поверхности планеты, является импактным кратером; в этом случае он оказывается самым крупным известным ударным кратером в Солнечной системе.

Марс имеет период вращения и смену времён года, аналогичные земным, но его климат значительно холоднее и суше земного.

Вплоть до полёта к Марсу автоматической межпланетной станции «Маринер-4» в 1965 году многие исследователи полагали, что на его поверхности есть вода в жидком состоянии. Это мнение было основано на наблюдениях за периодическими изменениями в светлых и тёмных участках, особенно в полярных широтах, которые были похожи на континенты и моря. Тёмные длинные линии на поверхности Марса интерпретировались некоторыми наблюдателями как ирригационные каналы для жидкой воды. Позднее было доказано, что большинство этих тёмных линий являются оптической иллюзией.

На самом деле из-за низкого давления вода не может существовать в жидком состоянии на большей части (около 70%) поверхности Марса. Вода в состоянии льда была обнаружена в марсианском грунте космическим аппаратом НАСА «Феникс». В то же время собранные марсоходами «Спирит» и «Opportunity» геологические данные позволяют предположить, что в далёком прошлом вода покрывала значительную часть поверхности Марса. Наблюдения в течение последнего десятилетия позволили обнаружить в некоторых местах на поверхности Марса слабую гейзерную активность. По наблюдениям с космического аппарата «Mars Global Surveyor», некоторые части южной полярной шапки Марса постепенно отступают.

С февраля 2009 года по настоящее время орбитальная исследовательская группировка на орбите Марса насчитывает три функционирующих космических аппарата: «Марс Одиссей», «Марс-экспресс» и «Mars Reconnaissance Orbiter». Это больше, чем около любой другой планеты, помимо Земли.

Поверхность Марса в настоящий момент исследуют два марсохода: «Opportunity» и «Curiosity». На поверхности Марса также находятся несколько неактивных посадочных модулей и марсоходов, завершивших исследования.

Марс хорошо виден с Земли невооружённым глазом. Его видимая звёздная величина достигает —2,91m (при максимальном сближении с Землёй). Марс уступает по яркости лишь Юпитеру (во время великого противостояния Марса он может превзойти Юпитер), Венере, Луне и Солнцу. Противостояние Марса можно наблюдать каждые два года. Последний раз Марс был в противостоянии 22 мая 2016 года, он находился на расстоянии 76 млн км от Земли. Как правило, во время великого противостояния (то есть при совпадении противостояния с Землёй и прохождения Марсом перигелия своей орбиты) оранжевый Марс является ярчайшим объектом земного ночного неба после Луны (не считая Венеру, которая и тогда ярче него, но видна утром и вечером), но это происходит лишь один раз в 15—17 лет в течение одной-двух недель.

Среднее расстояние от Марса до Солнца составляет 228 млн. км (1,52 а.e.), период обращения вокруг Солнца равен 687 земным суткам. Орбита Марса имеет довольно заметный эксцентриситет (0,0934), поэтому расстояние до Солнца меняется от 206,6 до 249,2 млн км. Наклонение орбиты Марса к плоскости эклиптики равно 1,85°.

Полярный радиус примерно на 20 км-21 км меньше экваториального радиуса, а относительное полярное сжатие Марса f = (1 – Rп/Rэ) больше земного (соответственно 1/170 и 1/298), хотя период вращения у Земли несколько меньший, чем у Марса; это позволило в прошлом выдвинуть предположение об изменении скорости вращения Марса со временем.

Сравнение размеров Земли (средний радиус 6371,11 км) и Марса (средний радиус 3389,5 км)

Атмосфера и климат

Атмосфера Марса, снимок получен искусственным спутником «Викинг» в 1976 году. Слева виден «кратер-смайлик» Галле

Температура на планете колеблется от —153° C на полюсах зимой и до +20° C на экваторе летом (максимальная температура атмосферы, зафиксированная марсоходом «Спирит», составила +35° C [34]), средняя температура – около 210 К (—63° C). В средних широтах температура колеблется от —50° C зимней ночью до 0° C летним днем, среднегодовая температура – —50° C.

Атмосфера Марса, состоящая в основном из углекислого газа, очень разрежена. Давление у поверхности Марса в 160 раз меньше земного – 6,1 мбар на среднем уровне поверхности. Из-за большого перепада высот на Марсе давление у поверхности сильно изменяется. Примерная толщина атмосферы – 110 км.

По данным NASA (2004), атмосфера Марса состоит на 95,32% из углекислого газа; также в ней содержится 2,7% азота, 1,6% аргона, 0,145% кислорода, 210 ppm водяного пара, 0,08% угарного газа, оксид азота (NO) – 100 ppm, неон (Ne) – 2,5 ppm, полутяжёлая вода водород-дейтерий-кислород (HDO) 0,85 ppm, криптон (Kr) 0,3 ppm, ксенон (Xe) – 0,08 ppm (состав приведён в объёмных долях).

По данным спускаемого аппарата АМС «Викинг» (1976), в марсианской атмосфере было определено около 1—2% аргона, 2—3%азота, а 95% – углекислый газ. Согласно данным АМС «Марс-2» и «Марс-3», нижняя граница ионосферы находится на высоте 80 км, максимум электронной концентрации 1,7 ? 105 электронов/см? расположен на высоте 138 км, другие два максимума находятся на высотах 85 и 107 км.

Радиопросвечивание атмосферы на радиоволнах 8 и 32 см, проведённое АМС «Марс-4» 10 февраля 1974 года, показало наличие ночной ионосферы Марса с главным максимумом ионизации на высоте 110 км и концентрацией электронов 4,6 ? 103 электронов/см?, а также вторичными максимумами на высоте 65 и 185 км.

Разреженность марсианской атмосферы и отсутствие магнитосферы являются причиной того, что уровень ионизирующей радиации на поверхности Марса существенно выше, чем на поверхности Земли. Мощность эквивалентной дозы на поверхности Марса составляет в среднем 0,7 мЗв/сутки (изменяясь в зависимости от солнечной активности и атмосферного давления в пределах от 0,35 до 1,15 мЗв/сутки) и обусловлена главным образом космическим излучением; для сравнения, на Земле среднемировая эквивалентная доза облучения от естественных источников, накапливаемая за год, равна 2,4 мЗв, в том числе от космических лучей 0,4 мЗв. Таким образом, за один-два дня космонавт на поверхности Марса получит такую же эквивалентную дозу облучения, какую на поверхности Земли он получил бы за год.

Атмосферное давление

По данным NASA на 2004 год, давление атмосферы на среднем радиусе составляет в среднем 636 Па (6,36 мбар), меняясь в зависимости от сезона от 400 до 870 Па. Плотность атмосферы у поверхности – около 0,020 кг/м?, общая масса атмосферы Марса – около 2,5 ? 1016 кг (для сравнения: масса атмосферы Земли составляет 5,2 ? 1018 кг).

В отличие от Земли, масса марсианской атмосферы сильно изменяется в течение года в связи с таянием и намерзанием полярных шапок, содержащих углекислый газ. Зимой 20—30% всей атмосферы намораживается на полярной шапке, состоящей из углекислоты.

В месте посадки зонда АМС «Марс-6» в районе Эритрейского моря было зафиксировано давление у поверхности 6,1 мбар, что на тот момент считалось средним давлением на планете, и от этого уровня было условлено отсчитывать высо?ты и глуби?ны на Марсе. По данным этого аппарата, полученным во время спуска, тропопауза находится на высоте примерно 30 км, где плотность воздуха составляет 5 ? 10—7 г/см? (как на Земле на высоте 57 км).

Ударная впадина Эллада – самое глубокое место Марса, где можно зафиксировать самое высокое атмосферное давление

Область Эллада настолько глубока, что атмосферное давление достигает примерно 12,4 мбар, что выше тройной точки воды (около 6,1 мбар), поэтому при достаточно высокой температуре вода могла бы существовать там в жидком состоянии; при таком давлении, однако, вода закипает и превращается в пар уже при +10° C.

На вершине высочайшей горы Марса, 27-километрового вулкана Олимп, давление может составлять от 0,5 до 1 мбар.

До высадки на поверхность Марса посадочных модулей давление было измерено за счёт ослабления радиосигналов с АМС «Маринер-4», «Маринер-6», «Маринер-7» и «Маринер-9» при их захождении за марсианский диск и выходе из-за марсианского диска – 6,5 ± 2,0 мбар на среднем уровне поверхности, что в 160 раз меньше земного; такой же результат показали спектральные наблюдения АМС «Марс-3». При этом в расположенных ниже среднего уровня областях (например, в марсианской Амазонии) давление, согласно этим измерениям, достигает 12 мбар.

Начиная с 1930-х годов, советские астрономы пытались определять давление атмосферы методами фотографической фотометрии – по распределению яркости вдоль диаметра диска в разных диапазонах световых волн. Французские учёные Б. Лио и О. Дольфюс производили с этой целью наблюдения поляризации рассеянного атмосферой Марса света. Сводку оптических наблюдений опубликовал американский астроном Ж. де Вокулёр в 1951 году, и по ним получалось давление 85 мбар, завышенное почти в 15 раз, поскольку не было отдельно учтено рассеяние света пылью, взвешенной в атмосфере Марса. Вклад пыли был приписан газовой атмосфере.

Климат

Циклон возле северного полюса Марса, снимки с телескопа «Хаббл» (27 апреля 1999 года)

Климат, как и на Земле, носит сезонный характер. Угол наклона Марса к плоскости орбиты почти равен земному и составляет 25,1919°; соответственно, на Марсе, так же как и на Земле, происходит смена времён года. Особенностью марсианского климата также является то, что эксцентриситет орбиты Марса значительно больше земного, и на климат также влияет расстояние до Солнца. Перигелий Марс проходит во время разгара зимы в северном полушарии и лета в южном, афелий – во время разгара зимы в южном полушарии и соответственно лета в северном. Вследствие этого климат северного и южного полушарий различается. Для северного полушария характерны более мягкая зима и прохладное лето; в южном полушарии зима более холодная, а лето более жаркое. В холодное время года даже вне полярных шапок на поверхности может образовываться светлый иней. Аппарат «Феникс» зафиксировал снегопад, однако снежинки испарялись, не достигая поверхности.

По сведениям НАСА (2004 год), средняя температура составляет ~210 K (—63° C). По данным посадочных аппаратов «Викинг», суточный температурный диапазон составляет от 184 K до 242 K (от —89 до —31° C) («Викинг-1»), а скорость ветра 2—7 м/с (лето), 5—10 м/с (осень), 17—30 м/с (пылевой шторм).

По данным посадочного зонда «Марс-6», средняя температура тропосферы Марса составляет 228 K, в тропосфере температура убывает в среднем на 2,5 градуса на километр, а находящаяся выше тропопаузы (30 км) стратосфера имеет почти постоянную температуру 144 K.

Исследователи из Центра имени Карла Сагана в 2007—2008 годах пришли к выводу, что в последние десятилетия на Марсе идёт процесс потепления. Специалисты НАСА подтвердили эту гипотезу на основе анализа изменений альбедо разных частей планеты. Другие специалисты считают, что такие выводы делать пока рано

. В мае 2016 года исследователи из Юго-Западного исследовательского института в Боулдере (Колорадо) опубликовали в журнале Science статью, в которой предъявили новые доказательства идущего потепления климата (на основе анализа данных Mars Reconnaissance Orbiter). По их мнению, этот процесс длительный и идёт, возможно, уже в течение 370 тыс. лет.

Существуют предположения, что в прошлом атмосфера могла быть более плотной, а климат – тёплым и влажным, и на поверхности Марса существовала жидкая вода и шли дожди. Доказательством этой гипотезы является анализ метеорита ALH 84001, показавший, что около 4 миллиардов лет назад температура Марса составляла 18 ± 4° C.

Главной особенностью общей циркуляции атмосферы Марса являются фазовые переходы углекислого газа в полярных шапках, приводящие к значительным меридиональным потокам. Численное моделирование общей циркуляции атмосферы Марса указывает на существенный годовой ход давления с двумя минимумами незадолго перед равноденствиями, что подтверждается и наблюдениями по программе «Викинг». Анализ данных о давлении выявил годовой и полугодовой циклы. Интересно, что, как и на Земле, максимум полугодовых колебаний зональной скорости ветра совпадает с равноденствиями. Численное моделирование выявляет также и существенный цикл индекса с периодом 4—6 суток в периоды солнцестояний. «Викингом» обнаружено подобие цикла индекса на Марсе с аналогичными колебаниями в атмосферах других планет.

Поверхность

Две трети поверхности Марса занимают светлые области, получившие название материков, около трети – тёмные участки, называемые морями. Моря сосредоточены главным образом в южном полушарии планеты, между 10 и 40° широты. В северном полушарии есть только два крупных моря – Ацидалийское и Большой Сирт.

Характер тёмных участков до сих пор остаётся предметом споров (возможно просачивается влага на поверхность)

.Они сохраняются, несмотря на то, что на Марсе бушуют пылевые бури. В своё время это служило доводом в пользу предположения, что тёмные участки покрыты растительностью. Сейчас полагают, что это просто участки, с которых, в силу их рельефа, легко выдувается пыль. Крупномасштабные снимки показывают, что на самом деле тёмные участки состоят из групп тёмных полос и пятен, связанных с кратерами, холмами и другими препятствиями на пути ветров. Сезонные и долговременные изменения их размера и формы связаны, по-видимому, с изменением соотношения участков поверхности, покрытых светлым и тёмным веществом.

Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1—2 км выше среднего уровня и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. Такое различие полушарий остаётся предметом дискуссий. Граница между полушариями следует примерно по большому кругу, наклонённому на 30° к экватору. Граница широкая и неправильная и образует склон в направлении на север. Вдоль неё встречаются самые эродированные участки марсианской поверхности.

Выдвинуто две альтернативных гипотезы, объясняющих асимметрию полушарий. Согласно одной из них, на раннем геологическом этапе литосферные плиты «съехались» (возможно, случайно) в одно полушарие, подобно континенту Пангея на Земле, а затем «застыли» в этом положении. Другая гипотеза предполагает столкновение Марса с космическим телом размером с Плутон около 4 млрд лет назад. В этом случае Северный Полярный бассейн, занимающий 40% поверхности планеты, является импактным кратером и оказывается самым крупным известным ударным кратером в Солнечной системе. Его длина – 10,6 тыс. км, а ширина – 8,5 тыс. км, что примерно в четыре раза больше, чем крупнейший ударный кратер Эллада, до того также обнаруженный на Марсе, вблизи его южного полюса.

Большое количество кратеров в южном полушарии предполагает, что поверхность здесь древняя – 3—4 млрд лет. Выделяют несколько типов кратеров: большие кратеры с плоским дном, более мелкие и молодые чашеобразные кратеры, похожие на лунные, кратеры, окружённые валом, и возвышенные кратеры. Последние два типа уникальны для Марса – кратеры с валом образовались там, где по поверхности текли жидкие выбросы, а возвышенные кратеры образовались там, где покрывало выбросов кратера защитило поверхность от ветровой эрозии. Самой крупной деталью ударного происхождения является равнина Эллада (примерно 2100 км в поперечнике).

В области хаотического ландшафта вблизи границы полушарий поверхность испытала разломы и сжатия больших участков, за которыми иногда следовала эрозия (вследствие оползней или катастрофического высвобождения подземных вод), а также затопление жидкой лавой. Хаотические ландшафты часто находятся у истока больших каналов, прорезанных водой. Наиболее приемлемой гипотезой их совместного образования является внезапное таяние подповерхностного льда.

Долины Маринер на Марсе

В северном полушарии, помимо обширных вулканических равнин, находятся две области крупных вулканов – Фарсида и Элизий. Фарсида – обширная вулканическая равнина протяжённостью 2000 км, достигающая высоты 10 км над средним уровнем. На ней находятся три крупных щитовых вулкана – гора Арсия, гора Павлина и гора Аскрийская. На краю Фарсиды находится высочайшая на Марсе и высочайшая известная в Солнечной системе гора Олимп, которая достигает 27 км высоты по отношению к его основанию и 25 км по отношению к среднему уровню поверхности Марса, и охватывает площадь 550 км диаметром, окружённую обрывами, местами достигающими 7 км высоты. Объём Олимпа в 10 раз превышает объём крупнейшего вулкана Земли Мауна-Кеа. Здесь же расположено несколько менее крупных вулканов. Элизий – возвышенность до шести километров над средним уровнем, с тремя вулканами – купол Гекаты, гора Элизий и купол Альбор.

По другим данным, высота Олимпа составляет 21 287 метров над нулевым уровнем и 18 километров над окружающей местностью, а диаметр основания – примерно 600 км. Основание охватывает площадь 282 600 км?. Кальдера (углубление в центре вулкана) имеет ширину 70 км и глубину 3 км.

Возвышенность Фарсида также пересечена множеством тектонических разломов, часто очень сложных и протяжённых. Крупнейший из них – долины Маринер – тянется в широтном направлении почти на 4000 км (четверть окружности планеты), достигая ширины 600 и глубины 7—10 км; по размерам этот разлом сравним с Восточноафриканским рифтом на Земле. На его крутых склонах происходят крупнейшие в Солнечной системе оползни. Долины Маринер являются самым большим известным каньоном в Солнечной системе. Каньон, который был открыт космическим аппаратом «Маринер-9» в 1971 году, мог бы занять всю территорию США, от океана до океана.

Панорама ударного кратера Виктория диаметром около 800 метров, снятая марсоходом «Оппортьюнити». Панорама составлена из снимков, которые были получены за три недели, в период с 16 октября по 6 ноября 2006

Панорама поверхности Марса в районе Husband Hill, снятая марсоходом «Спирит» 23—28 ноября 2005

Лёд и полярные шапки

Северная полярная шапка в летний период, фото Марс Глобал Сервейор. Длинный широкий разлом, рассекающий шапку слева – Каньон Северный

Внешний вид Марса сильно изменяется в зависимости от времени года. Прежде всего, бросаются в глаза изменения полярных шапок. Они разрастаются и уменьшаются, создавая сезонные явления в атмосфере и на поверхности Марса. Полярные шапки в максимуме разрастания могут достигать широты 50°. Диаметр постоянной части северной полярной шапки составляет 1000 км. По мере того как весной полярная шапка в одном из полушарий отступает, детали поверхности планеты начинают темнеть.

Северная и Южная полярные шапки состоят из двух составляющих: сезонной – углекислого газа и вековой – водяного льда. По данным со спутника «Марс-экспресс», толщина шапок может составлять от 1 м до 3,7 км. Аппарат «Марс Одиссей» обнаружил на южной полярной шапке Марса действующие гейзеры. Как считают специалисты НАСА, струи углекислого газа с весенним потеплением вырываются вверх на большую высоту, унося с собой пыль и песок.

В 1784 году астроном У. Гершель обратил внимание на сезонные изменения размера полярных шапок, по аналогии с таянием и намерзанием льдов в земных полярных областях. В 1860-х годах французский астроном Э. Ляи наблюдал волну потемнения вокруг тающей весенней полярной шапки, что тогда было истолковано как растекание талых вод и развитие растительности. Спектрометрические измерения, которые были проведены в начале XX века в обсерватории Ловелла во ФлагстаффеВ. Слайфером, однако, не показали наличия линии хлорофилла – зелёного пигмента земных растений.

По фотографиям «Маринера-7» удалось определить, что полярные шапки имеют толщину в несколько метров, а измеренная температура 115 K (—158° C) подтвердила возможность того, что она состоит из замёрзшей углекислоты – «сухого льда».

Возвышенность, которая получила название гор Митчелла, расположенная близ южного полюса Марса, при таянии полярной шапки выглядит как белый островок, поскольку в горах ледники тают позднее, в том числе и на Земле.

Данные аппарата Mars Reconnaissance Orbiter позволили обнаружить под каменистыми осыпями у подножия гор значительный слой льда. Ледник толщиной в сотни метров занимает площадь в тысячи квадратных километров, и его дальнейшее изучение способно дать информацию об истории марсианского климата.

Русла «рек» и другие особенности

Дельта высохшей реки Эберсвальде (фото Mars Global Surveyor)

Микрофотография конкреции гематита в марсианском грунте, снятая марсоходом «Оппортьюнити» 2 марта 2004 года (поле зрения 1,3 см), что свидетельствует о присутствии в геологическом прошлом воды в жидком состоянии

Так называемая «чёрная дыра» (колодец) диаметром более 150 м на поверхности Марса. Видна часть боковой стенки. Склон горы Арсия (фото «Марсианского разведывательного спутника»)

На Марсе имеется множество геологических образований, напоминающих водную эрозию, в частности, высохшие русла рек. Согласно одной из гипотез, эти русла могли сформироваться в результате кратковременных катастрофических событий и не являются доказательством длительного существования речной системы. Однако последние данные свидетельствуют о том, что реки текли в течение геологически значимых промежутков времени. В частности, обнаружены инвертированные русла (то есть русла, приподнятые над окружающей местностью). На Земле подобные образования формируются благодаря длительному накоплению плотных донных отложений с последующим высыханием и выветриванием окружающих пород. Кроме того, есть свидетельства смещения русел в дельте реки при постепенном поднятии поверхности.

В юго-западном полушарии, в кратере Эберсвальде обнаружена дельта реки площадью около 115 км?. Намывшая дельту река имела в длину более 60 км.

Данные марсоходов НАСА «Спирит» и «Оппортьюнити» свидетельствуют также о наличии воды в прошлом (найдены минералы, которые могли образоваться только в результате длительного воздействия воды). Аппарат «Феникс» обнаружил залежи льда непосредственно в грунте.

Кроме того, обнаружены тёмные полосы на склонах холмов, свидетельствующие о появлении жидкой солёной воды на поверхности в наше время. Они появляются вскоре после наступления летнего периода и исчезают к зиме, «обтекают» различные препятствия, сливаются и расходятся. «Сложно представить, что подобные структуры могли сформироваться не из потоков жидкости, а из чего-то иного», – заявил сотрудник НАСА Ричард Зурек. Дальнейший спектральный анализ показал присутствие в указанных областях перхлоратов – солей, способных обеспечить существование жидкой воды в условиях марсианского давления.

28 сентября 2012 года на Марсе обнаружены следы пересохшего водного потока. Об этом объявили специалисты американского космического агентства НАСА после изучения фотографий, полученных с марсохода «Кьюриосити», на тот момент работавшего на планете лишь семь недель. Речь идёт о фотографиях камней, которые, по мнению учёных, явно подвергались воздействию воды.

На вулканической возвышенности Фарсида обнаружено несколько необычных глубоких колодцев. Судя по снимку аппарата «Марсианский разведывательный спутник», сделанному в 2007 году, один из них имеет диаметр 150 метров, а освещённая часть стенки уходит в глубину не менее чем на 178 метров. Высказана гипотеза о вулканическом происхождении этих образований.

На Марсе имеется необычный регион – Лабиринт Ночи, представляющий собой систему пересекающихся каньонов. Их образование не было связано с водной эрозией, и вероятная причина появления – тектоническая активность. Когда Марс находится вблизи перигелия, над лабиринтом Ночи и долинами Маринера появляются высокие (40—50 км) облака. Восточный ветер вытягивает их вдоль экватора и сносит к западу, где они постепенно размываются. Их длина достигает нескольких сотен (до тысячи) километров, а ширина – нескольких десятков. Состоят они, судя по условиям в этих слоях атмосферы, тоже из водяного льда. Они довольно густые и отбрасывают на поверхность хорошо заметные тени. Их появление объясняют тем, что неровности рельефа вносят возмущения в воздушные потоки, направляя их вверх. Там они охлаждаются, а содержащийся в них водяной пар конденсируется.

Грунт

Фотография марсианского грунта в месте посадки аппарата «Феникс»

Элементный состав поверхностного слоя грунта, определённый по данным посадочных аппаратов, неодинаков в разных местах. Основная составляющая почвы – кремнезём (20—25%), содержащий примесь гидратов оксидов железа (до 15%), придающих почве красноватый цвет. Имеются значительные примеси соединений серы, кальция, алюминия, магния, натрия (единицы процентов для каждого).

Согласно данным зонда НАСА «Феникс» (посадка на Марс 25 мая 2008 года), соотношение pH и некоторые другие параметры марсианских почв близки к земным, и на них теоретически можно было бы выращивать растения. «Фактически мы обнаружили, что почва на Марсе отвечает требованиям, а также содержит необходимые элементы для возникновения и поддержания жизни как в прошлом, так и в настоящем и будущем», сообщил ведущий исследователь-химик проекта Сэм Кунейвс. Также, по его словам, данный щелочной тип грунта (pH = 7,7) многие могут встретить на «своём заднем дворе», и он вполне пригоден для выращивания спаржи.

В месте посадки аппарата в грунте имеется также значительное количество водяного льда. Орбитальный зонд «Марс Одиссей» также обнаружил, что под поверхностью красной планеты есть залежи водяного льда. Позже это предположение было подтверждено и другими аппаратами, но окончательно вопрос о наличии воды на Марсе был решён в 2008 году, когда зонд «Феникс», севший вблизи северного полюса планеты, получил воду из марсианского грунта.

Данные, полученные марсоходом Curiosity и обнародованные в сентябре 2013 года, показали, что содержание воды под поверхностью Марса гораздо выше, чем считалось ранее. В породе, из которой брал образцы марсоход, её содержание может достигать 2% по весу.

Геология и внутреннее строение

В прошлом на Марсе, как и на Земле, происходило движение литосферных плит. Это подтверждается особенностями магнитного поля Марса, местами расположения некоторых вулканов, например, в провинции Фарсида, а также формой долины Маринер. Современное положение дел, когда вулканы могут существовать гораздо более длительное время, чем на Земле, и достигать гигантских размеров, говорит о том, что сейчас данное движение скорее отсутствует. В пользу этого говорит тот факт, что щитовые вулканы растут в результате повторных извержений из одного и того же жерла в течение длительного времени. На Земле из-за движения литосферных плит вулканические точки постоянно меняли своё положение, что ограничивало рост щитовых вулканов и, возможно, не позволяло достичь им такой высоты, как на Марсе. С другой стороны, разница в максимальной высоте вулканов может объясняться тем, что из-за меньшей силы тяжести на Марсе возможно построение более высоких структур, которые не обрушились бы под собственным весом. Возможно, на планете имеется слабая тектоническая активность, приводящая к образованию наблюдаемых с орбиты пологих каньонов.

Сравнение строения Марса и других планет земной группы

Современные модели внутреннего строения Марса предполагают, что он состоит из коры со средней толщиной 50 км (максимальная оценка – не более 125 км), силикатной мантии и ядра радиусом, по разным оценкам, от 1480 [104] до 1800 км. Плотность в центре планеты должна достигать 8,5 г/см?. Ядро частично жидкое и состоит в основном из железа с примесью 14—18% (по массе) серы, причём содержание лёгких элементов вдвое выше, чем в ядре Земли. Согласно современным оценкам, формирование ядра совпало с периодом раннего вулканизма и продолжалось около миллиарда лет. Примерно то же время заняло частичное плавление мантийных силикатов. Из-за меньшей силы тяжести на Марсе диапазон давлений в мантии Марса гораздо меньше, чем на Земле, а значит, в ней меньше фазовых переходов. Предполагается, что фазовый переход оливина в шпинелевую модификацию начинается на довольно больших глубинах – 800 км (400 км на Земле). Характер рельефа и другие признаки позволяют предположить наличие астеносферы, состоящей из зон частично расплавленного вещества. Для некоторых районов Марса составлена подробная геологическая карта.

Согласно наблюдениям с орбиты и анализу коллекции марсианских метеоритов, поверхность Марса состоит главным образом из базальта. Есть некоторые основания предполагать, что на части марсианской поверхности материал является более кварцесодержащим, чем обычный базальт, и может быть подобен андезитным камням на Земле. Однако эти же наблюдения можно толковать в пользу наличия кварцевого стекла. Значительная часть более глубокого слоя состоит из зернистой пыли оксида железа.

Магнитное поле

У Марса было зафиксировано слабое магнитное поле.

Согласно показаниям магнетометров станций «Марс-2» и «Марс-3», напряжённость магнитного поля на экваторе составляет около 60 гамм, на полюсе – 120 гамм, что в 500 раз слабее земного. По данным АМС «Марс-5», напряжённость магнитного поля на экваторе составляла 64 гаммы, а магнитный момент планетарного диполя – 2,4 ? 1022 эрстед·см?.

Магнитное поле Марса крайне неустойчиво, в различных точках планеты его напряжённость может отличаться от 1,5 до 2 раз, а магнитные полюса не совпадают с физическими. Это говорит о том, что железное ядро Марса находится в сравнительной неподвижности по отношению к его коре, то есть механизм планетарного динамо, ответственный за магнитное поле Земли, на Марсе не работает. Хотя на Марсе не имеется устойчивого всепланетного магнитного поля, наблюдения показали, что части планетной коры намагничены и что наблюдалась смена магнитных полюсов этих частей в прошлом. Намагниченность данных частей оказалась похожей на полосовые магнитные аномалии в мировом океане.

По одной теории, опубликованной в 1999 году и перепроверенной в 2005 году (с помощью беспилотной станции «Марс Глобал Сервейор»), эти полосы демонстрируют тектонику плит 4 миллиарда лет назад – до того, как гидромагнитное динамо планеты прекратило выполнять свою функцию, что послужило причиной резкого ослабления магнитного поля. Причины такого резкого ослабления неясны. Существует предположение, что функционирование динамо 4 млрд лет назад объясняется наличием астероида, который вращался на расстоянии 50—75 тысяч километров вокруг Марса и вызывал нестабильность в его ядре. Затем астероид снизился до предела Роша и разрушился. Тем не менее, это объяснение само содержит неясные моменты и оспаривается в научном сообществе.