banner banner banner
Генетика на пальцах
Генетика на пальцах
Оценить:
Рейтинг: 0

Полная версия:

Генетика на пальцах

скачать книгу бесплатно

Генетика на пальцах
Андрей Левонович Шляхов

Наука для вундеркинда
Генетику принято считать трудной для понимания, но на самом деле все логичное понять легко, если двигаться в правильном направлении – от простого к сложному. Эта книга как раз так и написана. Она познакомит вас с основами генетики и многочисленными способами ее практического применения, а также даст научные ответы на имеющиеся у вас вопросы.

Чем ДНК отличается от РНК? Сколько разновидностей белков синтезируется в организме человека? Как передаются мутации? Какова вероятность наследственной предрасположенности к тем или иным заболеваниям? Когда рождается мальчик, а когда – девочка? В чем суть естественного отбора? Как произошли вирусы? Ответы на эти и другие вопросы вы найдете в этой увлекательной книге.

В формате PDF A4 сохранен издательский макет.

Андрей Шляхов

Генетика на пальцах

«Во всем должен быть порядок»

    Народная мудрость

© А.Л. Шляхов, 2022

© Издательство АСТ, 2022

Предисловие

Все живые организмы обладают двумя чудесными свойствами – наследственностью и изменчивостью. Чудесными (в переносном, разумеется, смысле) эти свойства называются потому, что благодаря им на нашей планете существует такое невероятное многообразие жизни.

Наследственностью называют способность живых организмов передавать свои признаки следующему поколению. Дети похожи на родителей…

Дети похожи на родителей, но не полностью, потому что наследственность тесно связана с изменчивостью – способностью живых организмов приобретать индивидуальные признаки, отличающие их от других особей. Наследственность и изменчивость – противоположные свойства, которые природа запрягла в одну упряжку. Наследственность поддерживает установленный порядок, а изменчивость его нарушает, и никуда им друг от друга не деться.

Что было бы, если бы не существовало наследственности?

А ничего бы не было! В смысле – ничего живого. Жизнь возможна только при условии непрерывного самоподдерживания посредством размножения, а без возможности передавать свои признаки следующему поколению размножаться нельзя.

Что было бы, если бы не существовало изменчивости?

На суше ничего живого не было бы. А в воде обитали бы потомки первого одноклеточного организма, с которого началась жизнь на нашей планете. Все они были бы полностью схожи друг с другом, каждое поколение являлось бы абсолютно точной копией предыдущего. Жизнь, как известно, зародилась в воде и первоначально развивалась там. При отсутствии изменчивости выход жизни из воды на сушу был бы невозможен. Порядок нужен, с этим никто не спорит, но что-то где-то иногда должно изменяться…

Наука, изучающая закономерности наследственности и изменчивости, называется генетикой. В вольном переводе с греческого ее название означает «наука о происхождении». Генетика – относительно молодая наука, с непростой судьбой. Годом ее рождения считается 1865 год, в котором австрийский монах Грегор Мендель обнародовал результаты исследований о передаче признаков по наследству при скрещивании гороха. Революционные, без какого-либо преувеличения, опыты Менделя не удостоились внимания научной общественности, а новорожденная наука на протяжении четырех десятилетий словно бы и не существовала. У нее даже имени своего не было, не говоря о чем-то другом. Лишь в 1906 году британский биолог Уильям Бэтсон образовал от греческого слова «генезис» («рождение») термин «генетика». Получив имя, новая наука начала быстро развиваться. Открытия шли одно за другим, появлялись новые направления, выраставшие в отдельные отрасли. На сегодняшний день генетика является не просто наукой, а совокупностью научных дисциплин, число которых перевалило за три десятка.

Раньше преступники творили свои черные дела в перчатках, чтобы не оставлять отпечатков пальцев на месте преступления, а сейчас самые осторожные из них действуют в наглухо закрытых комбинезонах, чтобы не оставить криминалистам ни волоска, ни кожной чешуйки, ни капельки слюны или крови, из которых можно выделить ДНК[1 - О том, что это такое, будет рассказано в первой главе.] и «пробить» ее по генетической базе. Криминалистическая генетика помогает раскрывать преступления.

Генная инженерия широко используется в животноводстве, растениеводстве и медицине. Все, наверное, слышали о генетически модифицированных организмах и векторных вакцинах? А знаете ли вы, что в будущем врачи будут лечить пациентов, «переписывая» их наследственные программы?

А сколько нам открытий чудных готовит археогенетика, которая изучает генетическую историю жизни на нашей планете? Выделенная из археологических останков ДНК «рассказывает» о том, как именно происходило расселение человека по планете; о том, чем болели наши древние предки; о том, чем они питались, и о многом другом…

Эта книга предназначена как для школьников, которым хочется больше знать и лучше понимать, так и для взрослых, которым интересна генетика. Изложенный материал выходит за рамки школьного курса генетики, включенного в программу по биологии, однако не стоит бояться, что вы чего-то не поймете, поскольку информация подается в легкоусвояемом виде. Книга написана по принципу «просто о сложном», как и положено в серии «Наука на пальцах».

Познавательного вам чтения!

Глава 1

Две кислоты, без которых не было бы жизни

В далеком 1869 году швейцарский биолог Иоганн Мишер выделил из клеточных ядер человеческих лейкоцитов[2 - Лейкоцит – одна из разновидностей клеток крови.] вещество, которое назвал «нуклеином» от латинского слова «нуклеус» («ядро»). Мишер установил, что нуклеин состоит из углерода, кислорода, водорода, азота и фосфора, а также то, что нуклеин обладает кислыми свойствами, но ничего большего возможности того времени сделать не позволяли. «Расшифровать» структуру нуклеина удалось лишь в середине ХХ века. По результатам «расшифровки» нуклеин переименовали в дезоксирибонуклеиновую кислоту (ДНК).

Пусть вас не смущает столь длинное название. С третьей попытки его можно произнести уже без запинки, да и вообще чаще всего пользуются аббревиатурой ДНК, так проще. Следом за дезоксирибонуклеиновой кислотой была изучена рибонуклеиновая кислота (РНК), содержащаяся как в клеточном ядре, так и за его пределами.

Молекулы ДНК и РНК состоят из повторяющихся блоков, которые называются нуклеотидами. Нуклеотиды, в свою очередь, состоят из азотистого основания и одного из двух сахаров: рибозы или дезоксирибозы[3 - Азотистые основания представляют собой гетероциклические производные пиримидина и пурина. В рамках нашего разговора о генетике нет смысла глубоко погружаться в химию, достаточно знать названия пяти азотистых оснований, входящих в состав молекул ДНК и РНК.]. От сахара образуется название нуклеиновой кислоты. В состав ДНК и РНК входят четыре азотистых основания. Аденин (A), гуанин (G) и цитозин (C) – общие для обоих нуклеиновых кислот, тимин (T) встречается только в ДНК, а урацил (U) – только в РНК[4 - Речь идет о ДНК и РНК человека. У некоторых организмов в состав ДНК может входить урацил.]. Условно азотистые основания можно сравнить с буквами, при помощи которых записывается наследственная информация организма.

Если с химической точки зрения ДНК и РНК довольно схожи между собой как представители одной и той же группы нуклеиновых кислот, то с генетической точки зрения разница между ними огромна. Молекулы ДНК являются хранителями наследственной информации и организаторами ее передачи по назначению. А молекулы РНК играют вспомогательную роль. Однако из этого правила существует исключение. У многих вирусов, не имеющих ДНК, наследственная информация «записана» на молекулах РНК. А еще у вирусов, наряду с двухцепочечной ДНК и одноцепочечной РНК, встречаются и двухцепочечная РНК, и одноцепочечная ДНК, имейте это в виду.

Молекулы ДНК гораздо крупнее молекул РНК, которые тоже не маленькие. Если молекулы РНК можно назвать крупными, то молекулы ДНК – гигантскими. Число нуклеотидов в ДНК может доходить до нескольких сотен миллионов. Молекулы ДНК состоят не из одной, а из двух нуклеотидных цепочек, которые для пущей компактности еще и закручены вокруг своей оси в спираль. Цепочки устроены так, что остатки фосфорной кислоты и дезоксирибозы выполняют роль каркаса, похожего на перила винтовой лестницы, а нуклеотиды-«ступеньки» располагаются внутри и доступны для считывания. А вот молекулы РНК состоят из одной длинной нуклеотидной цепочки, которая также закручивается в спираль, или из множества одинарных спиралей, образующих подобие клубка.

Схематическое изображение фрагментов молекул ДНК и РНК

Наследственную информацию, закодированную в молекулах ДНК, нужно передавать потомкам, верно? Следовательно, нужно копировать молекулы ДНК. Эти молекулы настолько сознательны, что копируют себя сами. Про сознательность была шутка, потому что молекулы разумом не обладают, а про самокопирование – чистая правда. Молекулы ДНК обладают способностью к самовоспроизведению, которая по-научному называется репликацией.

Процесс репликации происходит так. Двойная нуклеотидная цепочка разъединяется, и по каждому из фрагментов начинают «ползти», то есть перемещаться, белковые комплексы, содержащие фермент[5 - Ферментами или энзимами называются молекулы белков или РНК, ускоряющие химические реакции в живых системах.] под названием ДНК-полимераза. ДНК-полимераза считывает информацию с материнской цепочки и на ее основе создает новую цепочку. Таким образом в ходе процесса из одной молекулы ДНК образуются две дочерние, каждая из которых содержит половину (одну цепочку) материнской ДНК. Разъединение двойной спирали для копирования обеспечивает особый фермент, который называется хеликазой. Хеликазу можно сравнить с ножницами, разрезающими связи между цепочками.

Репликация

Репликация – основа наследственности. Дочерние ДНК должны являться копиями материнской ДНК. Обратите внимание на слово «должны», потому что оно имеет важное значение. Да, природа «запрограммировала» молекулы ДНК на точное самокопирование, однако во время репликации вместо нужного нуклеотида в цепочку может быть встроен другой, содержащий иное азотистое основание. Такие ошибки неизбежны. В результате наследственный код может измениться. Вот вам один из примеров изменчивости.

Имеете ли вы представление о скорости размножения бактерий? Если с питанием все в порядке, то есть бактерии находятся в питательной среде, содержащей все необходимое, то примерно раз в 20 минут одна бактерия будет делиться на две дочерние клетки. В идеальных условиях, исключающих гибель бактерий, от одной клетки-праматери за 10 часов может образоваться миллион потомков! А вот амеба, пребывающая в благоприятных условиях, делится надвое раз в сутки, а то и реже. Как, по-вашему, чем можно объяснить столь большую разницу в скорости размножения у двух одноклеточных организмов?

Давайте вспомним, что амебы относятся к эукариотам, то есть организмам, клетки которых имеют ядро[6 - Некоторые клетки многоклеточных эукариот могут не иметь ядер. Пример – эритроциты (красные кровяные тельца) человека.], а бактерии – к безъядерным прокариотам. У эукариот репликация протекает со скоростью от 500 до 5000 нук- леотидных пар в минуту, а у прокариот скорость репликации гораздо выше и в среднем составляет около 100 000 пар в минуту. Почему? Да потому, что у эукариот молекулы ДНК содержатся в ядрах, а у прокариот находятся в цитоплазме – полужидкой внутренней среде клетки. Проще говоря, в клетках-эукариотах ДНК хранится в «упакованном» виде, а у прокариот в «распакованном», полностью готовом к копированию. Прокариотам, в отличие от эукариот, не приходится тратить время на «распаковку» и «упаковку» молекул ДНК, а также на транспортировку «строительного материала» внутрь ядра из цитоплазмы, потому и репликация у них протекает гораздо быстрее. Кроме того, амебы имеют более сложное строение, чем бактерии, а на воспроизводство большего количества клеточных структур тоже требуется больше времени. Но главное различие – скорость репликации.

Вот вам вопрос на сообразительность (ответ будет дан в конце этой главы).

Первое. Эукариоты произошли от прокариот. Самые первые клетки были безъядерными, ядра появились на определенном этапе эволюции. С одной стороны, мы знаем, что естественный отбор, являющийся основным фактором эволюции, можно сказать – ее движущей силой, оставляет (закрепляет) полезные, благоприятные для существования и размножения признаки и исключает вредные, неблагоприятные. Это происходит само собой, а не по чьему-то велению. Особь, обладающая благоприятным признаком, сможет прожить дольше и оставить больше потомства, чем условно-средняя особь, не имеющая такого признака. И ее потомки, получившие благоприятный признак, тоже смогут прожить дольше и оставить больше потомства. Таким образом, со временем признак распространится по всей популяции[7 - Популяцией называется совокупность организмов одного вида, длительное время обитающих на одной территории и частично или полностью изолированных от особей других аналогичных групп того же вида.], а особь с неблагоприятным признаком проживет меньше среднего и оставит мало потомства, а то и вовсе не доживет до половозрелого возраста. Иначе говоря, вредный признак не будет передан потомству или же будет передан малому количеству потомков. В отличие от полезного, вредный признак не сможет распространиться по всей популяции, он со временем сойдет на нет.

Второе. Высокая скорость размножения с эволюционной точки зрения безусловно является благоприятным признаком. Чем быстрее растут наши ряды, тем скорее мы вытесним всех конкурентов и завоюем мир! В конечном итоге все живые организмы к этому и стремятся.

Третье. Эволюция не ошибается, потому что она этого не умеет. Ошибается тот, кто принимает решение, а эволюционный процесс протекает стихийно, без какого-либо контроля.

Вопрос: так почему же появление клеточного ядра было закреплено естественным отбором как полезный признак? Можно спросить иначе: почему довольно канительная «упаковка» молекул ДНК в клеточное ядро была закреплена естественным отбором как полезный признак?

Пойдем дальше.

Молекулы ДНК служат матрицами для молекул РНК. Образование молекулы РНК на ДНК-матрице называется транскрипцией. Транскрипция напоминает репликацию – по молекуле ДНК «ползет» фермент РНК-полимераза и по считываемому коду синтезирует молекулу РНК.

Молекулы РНК, в свою очередь, служат матрицами для синтеза молекул различных белков. Этот процесс называется трансляцией.

Вся наследственная информация реализуется в виде синтеза тех или иных белков, являющихся основой жизни на нашей планете. Все свойства живых организмов, начиная с цвета волос и заканчивая состоянием иммунной системы, определяются белками.

У вдумчивых читателей может возникнуть вопрос: зачем сначала синтезировать РНК-матрицы на ДНК-матрицах, а затем на РНК-матрицах синтезировать белковые молекулы? Зачем нужны посредники, на создание которых приходится тратить время и средства? Опять же, лишние копирования увеличивают процент ошибок…

Так удобнее. Молекула ДНК представляет собой весьма громоздкую матрицу. Маленькие матрицы РНК гораздо удобнее для синтеза белковых молекул, и это удобство оправдывает затраты на их производство. Кроме того, ДНК-матрица в клетке всего одна, а РНК-матриц можно «наштамповать» много и вести синтез белковых молекул на всех одновременно. В живой природе нет ничего избыточного и нерационального, а если что-то и кажется нам таковым, то только лишь по причине непонимания сути. Так, например, мы пока еще не знаем назначение участков молекул ДНК, не хранящих никакой информации. Эти участки не очень-то благозвучно называют «мусорной ДНК», но дело не в названии, а в том, что к «мусору» относится более 90 % молекулы ДНК. Если бы эти участки на самом деле были бы «мусором», то есть чем-то ненужным, то они давным-давно исчезли бы в ходе эволюционного процесса. Однако же они сохранились, следовательно, без них обойтись нельзя.

РНК служат не только матрицами. Они входят в состав ряда ферментов и сами по себе тоже способны проявлять ферментативную активность, которая выражается в способности «разрывать» другие молекулы РНК или, напротив, «склеивать» их фрагменты. РНК, выступающие в роли самостоятельных ферментов, называются рибозимами.

Существует также транспортная РНК, которая переносит аминокислоты к месту синтеза белков. А малютка РНК-праймер, состоящая всего из десятка нуклеотидов, выполняет очень важную функцию – запускает процесс репликации ДНК.

Кстати говоря, вид одной длинной спирали имеют молекулы РНК, служащие матрицей для синтеза белков. Все прочие, «нематричные» разновидности РНК состоят из «клубков», образованных множеством коротких спиралей.

У многих вирусов РНК играет роль ДНК, то есть является хранителем наследственной информации. А знаете ли вы, что представляют собой вирусы? Молекулу нуклеиновой кислоты (ДНК или РНК), заключенную в защитную белковую оболочку, называемую капсидом. Капсид выполняет не только защитную функцию. Он также обеспечивает прикрепление вируса к поверхности клеточных мембран благодаря наличию рецепторов, способных связываться с мембранными рецепторами клеток-мишеней. Капсид остается за пределами клетки, а нуклеиновая кислота вируса проникает внутрь и «переключает» клетку на производство вирусов. Паразитируя в клетках, вирусы нарушают их нормальную жизнедеятельность, вызывая болезни. Только в клетке вирус живет «полноценной», активной жизнью. Вне клетки он находится в неактивном состоянии. Вирусы поражают все живое: животных, растения, микроорганизмы.

Размеры вирусов очень малы, поэтому их величину измеряют не в микронах (миллионных долях метра), а в нанометрах (миллиардных долях метра). «Мелкий» вирус полиомиелита имеет размер около 20 нм, а «гигантский» вирус желтухи свеклы – 1500 нм. Одну клетку могут заселять одновременно несколько десятков вирусов.

Одни ученые считают вирусы особой, неклеточной формой жизни, а другие – всего лишь «неживыми» комплексами органических молекул, которые способны взаимодействовать с живыми организмами.

С одной стороны, вирусы могут реализовывать свою наследственную информацию, то есть воспроизводиться, только после внедрения в клетки за счет использования клеточных ресурсов. Своего обмена веществ у вирусов нет, за пределами клетки они неактивны.

С другой стороны, вирусы имеют собственный наследственный материал, они способны к размножению (пусть и внутри клетки-хозяина) и эволюционируют путем естественного отбора, что позволяет отнести их к живым организмам.

Хорошо подходит к вирусам поэтичное определение «организмы на краю жизни». В шутку биологи говорят о вирусах так: «Они живые, но не совсем».

Схематическое изображение различных вирусов

Вирусы служат одним из инструментов генной инженерии, о которой мы поговорим после того, как ознакомимся с основами генетики.

ОТВЕТ НА ВОПРОС. Для выживания биологического вида[8 - Биологический вид – это совокупность особей, сходных по строению, имеющих общее происхождение, свободно скрещивающихся между собой и дающих плодовитое потомство.] имеет значение не только скорость размножения, но и качество потомства. Грубо говоря, выгоднее иметь одного полноценного, здорового потомка, чем десять «дефективных». «Упаковку» молекул ДНК в ядро можно сравнить с убиранием вещей в шкаф, где они будут защищены от разных случайных повреждений. Нахождение в ядре способствует лучшему сохранению бесценной наследственной информации. И вообще в отношении потомства работает принцип «лучше меньше, да лучше».

Глава 2

Гены и их свойства

Ген представляет собой участок молекулы ДНК, в котором закодирована последовательность синтеза одного конкретного белка или же одной конкретной РНК. Молекулы ДНК условно можно сравнить с книгами, а гены – с абзацами.

Один ген отвечает за синтез одного химического вещества, и потому он считается структурной и функциональной единицей наследственности – структурной как часть молекулы ДНК и функциональной, поскольку выполняет одну конкретную функцию. Впрочем, классическая концепция генетики («один ген – один белок – один признак») довольно условна и далеко не всегда верна, но об этом мы поговорим немного позже.

Примечательно, что термин «ген» появился в 1909 году, задолго до того, как ученые узнали о свойствах и структуре ДНК. Изначально ген был условным понятием, обозначающим нечто, определяющее один конкретный признак организма. Ученым был нужен термин, определяющий единицу наследственности. Без этого термина невозможно было выстраивать гипотезы и вести научный поиск.

Кстати говоря, с атомами произошла такая же история. Понятие об атоме как о наименьшей неделимой частице материи впервые было сформулировано еще древнегреческими и древнеиндийскими философами. Научные же определения понятий молекулы и атома были приняты только в 1860 году. А приемлемая с научной точки зрения модель атома появилась лишь в 1913 году. Таким образом, атом не имел четкого научного объяснения более двух тысяч лет, что не мешало оперировать этим понятием!

Логическим путем ученые пытались установить количество генов человека. Данные «широко плавали» – от ста тысяч до миллиона, но все сходились на том, что генов очень и очень много, а оттолкнувшись от этого, приходили к выводу, что носителями наследственной информации должны быть белки, а не ДНК.

Молекулы многих белков по своим размерам могут сравниться с молекулами ДНК, но при этом они состоят из двадцати разных аминокислот[9 - Аминокислотами называются химические соединения, в молекуле которых одновременно содержатся карбоксильные группы и аминогруппы.], а молекулы ДНК образованы четырьмя нуклеотидами (выделять составные части гигантских молекул ученые научились гораздо раньше, чем изучили их структуры). «Двадцать аминокислот дают несравнимо большее количество комбинаций, чем четыре нуклеотида, следовательно, носителями наследственной информации являются белки», – говорили сторонники белковой природы гена, и это утверждение трудно было оспорить. В то время (первая половина ХХ века) никто и помыслить не мог о том, что счет нуклеотидам в молекуле ДНК может идти даже не на миллионы, а на сотни миллионов! Да, наследственная информация записана всего четырьмя буквами, но в очень и очень толстых книгах.

Так сколько же у нас генов? В наше время принято считать, что у человека их около двадцати тысяч. Всего-навсего…

Знакомо ли вам выражение «и на старуху бывает проруха»? Такая вот «проруха» произошла с создателем эволюционной теории Чарльзом Дарвином, который первым попытался всерьез разобраться в принципах наследственности и объяснить, как именно происходит наследование признаков от родителей.

Предупреждение: дальше читайте не просто внимательно, а очень внимательно, потому что за описанием гипотезы Дарвина последует вопрос.

Для объяснения механизма наследственности Дарвин придумал геммулы, некие гипотетические частицы, обеспечивающие наследование признаков. Эти самые геммулы, по мнению ученого, образовывались во всех клетках организма, а затем поступали в кровь и с током крови доставлялись в половые железы. Каждая «новорожденная» половая клетка получала полный набор геммул от всех клеток организма, иначе говоря – получала всю наследственную информацию, которая затем передавалась потомству.

Предположение Дарвина выглядело весьма логично. К тому же оно объясняло наследование приобретенных признаков. Изменившиеся клетки (суть нового признака заключается в изменении клеток) вырабатывают новые геммулы, отличающиеся от тех, которые они вырабатывали прежде.

По неизвестным нам причинам Дарвин не удосужился получить практическое подтверждение своей гипотезы. То ли другие дела помешали, то ли гипотеза казалась ему настолько крепкой, что проверять ее на практике не было необходимости.

А теперь вопрос: как бы вы проверили дарвиновскую гипотезу?

Примечание. Вы ученый-биолог. У вас есть лаборатория со всем необходимым, а также есть возможность использовать подопытных животных, ваши возможности практически неограниченны. Cтарайтесь, чтобы ваш эксперимент был как можно проще. Незачем усложнять, если можно обойтись без этого.

Идем дальше. Пора нам познакомиться с геном поближе, узнать о его свойствах.

Главным свойством гена является его дискретность. Это слово можно перевести как «обособленность». Каждый ген существует сам по себе. Гены не могут соединяться друг с другом и в результате образовывать новый ген. Одни гены могут подавлять другие, не давая им возможности выполнять свою функцию, но не могут с ними соединяться. Ген един и неделим! Именно дискретность делает ген структурной и функциональной ЕДИНИЦЕЙ наследственности.

Из дискретности логически вытекает другое свойство генов – их стабильность. Гены способны функционировать, не изменяя собственной структуры. Каким ген был, таким он и остается после считывания с него наследственной информации.

Однако в то же время стабильность генов сочетается с их лабильностью – способностью изменяться.

Напрашивается вопрос: «Как ген может одновременно быть и стабильным, и лабильным?! Это же взаимоисключающие понятия!».

Да, взаимоисключающие. Но, тем не менее, гену присущи оба этих свойства.

Давайте разбираться. Сам по себе, как структурная единица, как фрагмент молекулы ДНК, ген стабилен. В процессе выполнения своих функций ген никак не изменяется.

Изменяется ген при копировании молекулы ДНК или же при ее повреждении. Мы еще будем говорить об этом, а пока что важно усвоить следующее – гены способны изменяться в результате каких-то «глобальных» процессов, происходящих со всей молекулой ДНК. Но сам по себе ген стабилен. Во время работы, то есть во время считывания информации, с ним ничего не происходит.

Одни и те же гены, то есть гены, отвечающие за развитие одного признака, могут существовать в различных формах, которые называются аллелями (не путайте аллели с аллеями!). Обычно аллельных генов два, один получен от матери, а другой – от отца. По каждому кодируемому признаку мы имеем парный набор генов.

Аллельные гены могут подавлять друг друга, то есть блокировать считывание информации с парного гена. Так, например, ген карих глаз подавляет ген голубых глаз. Если у отца глаза карие, а у матери и ее родителей – голубые, то у ребенка будут карие глаза. В свое время мы рассмотрим принципы наследования признаков более подробно. Пока что надо запомнить, что одни и те же гены могут существовать в различных формах (аллелях) и что аллельные гены могут друг друга подавлять. Кто кого подавляет, предопределено изначально, а не определяется конкретной ситуацией. Иначе говоря, ген карих глаз будет подавлять ген голубых глаз у всех людей.

Конкуренция в рамках пары генов приводит к тому, что одни признаки наследуются от отца, а другие от матери. Но при этом никогда в наследовании не будет половинчатости! Невозможно унаследовать один признак наполовину от матери и наполовину от отца, потому что гены не смешиваются друг с другом даже в парах, отвечающих за один и тот же признак. Гены никогда не смешиваются! Образно говоря, у ребенка голубоглазой матери и кареглазого отца будут голубые (в отдельных случаях такое возможно, и мы это в свое время обсудим) или карие глаза, но не темно-голубые или светло-карие.

«Сила» гена, его способность подавлять парный ген, называется экспрессивностью. Экспрессивность определяет степень выраженности гена в кодируемом им признаке. Чем ген экспрессивнее, тем сильнее он подавляет своего аллельного собрата.

Гены специфичны, каждый ген кодирует синтез одного конкретного белка, то есть отвечает за один определенный признак. Один ген – один белок – один признак… Однако настало время внести уточнение в это утверждение.

Предупреждение: читаем вдумчиво и ничему не удивляемся! Не бойтесь, что поначалу в голове образуется какая-то «каша», к концу этой главы вся «каша» разложится по тарелочкам!

Некоторые гены обладают множественным действием, то есть способностью влиять на несколько признаков. Такая «многогранность» называется плейотропией.

Плейотропия может быть первичной или вторичной.

При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек.

При вторичной плейотропии ген, по сути дела, влияет на один признак, от которого напрямую зависит несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. «Дефективный», то есть измененный ген, вызывает нарушение синтеза гемоглобина и на этом «умывает руки». Дальше действует «дефективный» гемоглобин, который приводит к таким вторичным проявлениям, как невосприимчивость к малярии, анемия,[10 - Анемиями называются заболевания крови, сопровождаемые уменьшением содержания гемоглобина и эритроцитов.] увеличение печени и селезенки, поражение сердца и головного мозга.

Важно понимать, что правилу «один ген – один белок – один признак» плейотропия совершенно не противоречит. Белок-то в результате считывания информации с гена вырабатывается один, просто он может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок (или одна РНК)», и эта концепция будет верной для любого, без исключения. Вы с этим согласны? Наверное, согласны, ведь с помощью одной матрицы два разных вещества не наштампуешь…

А знаете ли вы, сколько разновидностей белков синтезируется в организме человека? Более ста тысяч! А генов у нас, как вы уже знаете, примерно впятеро меньше. Получается, что в среднем один ген должен обеспечивать синтез пяти белков. Но матрица-то одна! Код один!

Да, матрица одна, честное слово, одна. А «продуктов», тем не менее, она дает несколько.

Как понимать такой «парадокс»?