Анатолий Дружинин.

Как сделать двигатель лучше. Новые поршневые кольца



скачать книгу бесплатно

Сделанные учеными выводы с одной стороны достаточно очевидные, а с другой стороны неполноценные, носят общий характер, мало влияющий на процесс проектирования поршневых колец. Не достает ответа на главный вопрос: как, и с какими усилиями действует давление рабочих газов в цилиндре на уплотнительное поршневое кольцо?

Процесс постоянно меняющегося давления всасываемого воздуха в цилиндр, затем смешавшегося вместе с топливом в камере сгорания и перешедшего в разряд рабочих газов, следует считать — газодинамическим процессом.

На основе анализа устоявшегося отношения ученых и специалистов мотористов к газодинамике, описывающих влияние давления рабочих газов на работу уплотнительного поршневого кольца, в 2004 году впервые была опубликована автором газодинамическая схема работы компрессионного кольца двигателя КАМАЗ [1]. Причем, так выглядит конструкция и положение компрессионного кольца без каких-либо уклонов верхнего торца и фасок по внутреннему диаметру (рис. 1).

Пришлось вспомнить и использовать известный физический закон, в приложении к данному случаю он может звучать следующим образом:

На свободные поверхности поршневого кольца (верхний торец и внутренняя вертикальная поверхность), расположенного в замкнутом пространстве, ограниченном стенкой цилиндра, дном поршневой канавки и ее верхней и нижней полками, находящемся под давлением рабочих газов, действуют силы, пропорциональные величинам площадей этих поверхностей.

Прорываясь через зазор между поршнем 2 и цилиндром 1 в верхнюю поршневую канавку, рабочее давление прижимает поршневое кольцо 3 к нижней полке поршневой канавки газодинамической силой F0, а к стенке цилиндра радиальной силой Fрад и силой собственной упругости Fупр. Расчет этих сил был представлен в предыдущих изданиях автора.

Очевидно наибольший интерес может представить подобный расчет для одного из наиболее популярных отечественных двигателей ВАЗ-2190, имеющего следующие параметры: максимальное давление рабочих газов в цилиндре при положении поршня в верхней мертвой точке, порядка Рраб = 80 кг/см2. Для удобства расчетов размеры представим в сантиметрах. Диаметр цилиндра – 82 мм = 8,2 см; наружный радиус r– 41 мм = 4,1 см; внутренний радиус r2 – 38 мм = 3,8 см; радиальная толщина кольца t = 3,0 мм = 0,3 см; высота верхнего компрессионного кольца h = 1,5 мм = 0,15 см.


Рис. 1. Газодинамическая схема работы компрессионного кольца двигателя КАМАЗ

1 – цилиндр; 2 – поршень; 3 – поршневое кольцо


Площадь верхнего торца определяется по формуле:

S1 = ? (r12 – r22) = 3,14 (4,12 – 3,82) = 3,14 (16,81 – 14,44) = 7,44 см2.

Площадь внутренней вертикальной поверхности определяется по формуле: S2 = 2 ?r2h = 6,28?3,8?0,15 = 3,58 см2.

Умножив давление рабочих газов на величины площадей, получим:

Fо = Рраб ? S1 = 80 ?7,44 = 595,2 кгс (5,95кН);

Fрад = Рраб ? S2 = 80 ?3,58 = 286,4 кгс (2,86 кН).

Из сравнения этих двух газодинамических сил, действующих на подвижное поршневое кольцо вывод очевиден.

Двукратно превосходящая осевая сила, надежно придавила поршневое кольцо к нижней полке поршневой канавки, лишив возможности радиальной силе прижать рабочую поверхность поршневого кольца к стенке цилиндра.

Что очень важно отметить в данном случае. Такая закономерность соблюдается во всех случаях, когда над поршнем появляется, имеется избыточное давление. Об этом и не только, рассмотрим на различных тактах рабочего цикла двигателя, но уже сейчас, забегая вперед, можно смело предсказать:

Газодинамическая схема принципиально изменила стратегию и тактику, теорию и практику проектирования двигателей внутреннего сгорания и поршневых компрессоров. При правильном ее применении в расчетах она оптимизирует размеры, форму и содержание двигателя и компрессора, существенным образом отражается на увеличении коэффициентов полезного действия того и другого.

Все обоснования приведены в работах автора и в данном учебном пособии. На момент написания этого пособия прошло более 12-ти лет после опубликования объективного факта недееспособности поршневого уплотнения. Информация опубликована и запатентована, доведена до сведения ученых и специалистов – мотористов, тем не менее, производители продолжают «производить» супер современные авто, оснащенные двигателями, имеющими столь существенные дефекты. Попробуем еще раз, более подробно изложить не столь сложное для понимания, но очень важное для специалистов решение проблемы повышения эффективности двигателей внутреннего сгорания.

§2. Газодинамика на различных тактах рабочего цикла двигателя

Работа, наиболее распространенного среди автотракторных двигателей внутреннего сгорания (диаметры цилиндров до 140 мм), четырехтактного двигателя заключается в эффективной реализации всех 4-х тактов рабочего цикла:

– «впуск» свежего заряда воздуха;

– «сжатие» рабочей среды, находящейся над поршнем;

– «рабочий ход» поршня, преобразующий огромное давление рабочих газов в механическую работу;

– «выпуск» отработавших рабочих газов и остатков продуктов горения.

Акцентируя внимание на отдельных тактах рабочего цикла двигателя, попробуем рассмотреть каждый из них в виде отдельного проекта, со своими отличиями и особенностями, но, в итоге объединенными в интегральную конструкцию эффективного использования двигателя.


Рабочий такт «впуск» (всасывание) в цилиндр двигателя, или компрессора, расчетного количества свежего заряда воздуха.

В задачу разработчиков любого конструктивного элемента входит: определение формы и размеров изделия, выбор материала заготовки, исходя из условий, в которых будет работать этот элемент. Это очень важный этап проектирования, от которого будет многое зависеть в работе изделия. В качестве исходных данных разработчикам известен только один размер – диаметр цилиндра.

Принципиальный недостаток многих отечественных конструкций (в том числе ДВС), заключается в том, что проектанты, предохраняя себя от негативных последствий в процессе испытаний и эксплуатации разработанного ими изделия, в своих расчетах берут коэффициент запаса не 1,10 или 1,20, как это должно быть, а 1,50 или 2,0, иногда более того. Какое значение это имеет для экономики, известно большинству специалистов. В рассматриваемом нами случае массового типа производства это просто недопустимо.

Исходя из предназначения рабочего такта «впуск», необходимо помнить, чем надежнее уплотнение между поршнем и цилиндром, исключающий, какой-либо подсос из картера, тем больше степень разряжения пространства над поршнем, тем активнее происходит заполнение цилиндра расчетным количеством атмосферного воздуха.

В начале движения поршня в нижнее положение, учитывая огромные скорости перемещения поршня, над ним и, соответственно, в верхней поршневой канавке, образуется некое разряженное пространство. «Впуск» – это единственный такт рабочего цикла двигателя, на который влияние газодинамической схемы, представленной на рис. 1, не распространяется. На данном такте газодинамика, в определенной степени, нейтральна, поэтому, опережая события, можно, абстрагируясь от последующих рабочих тактов, по иному подходить к проектированию компрессионных колец, исходя только из задач, вменяемых такту «впуск».

Тем не менее, производя достаточно сложный расчет упругих сил поршневых колец, разработчики не должны забывать, что на всех тактах рабочего цикла двигателя уплотнительное (компрессионное) поршневое кольцо должно выполнять две основные задачи и одно обязательное условие:

уплотнять пространство между поршнем и цилиндром, обеспечивать передачу тепла от перегретой головки поршня охлаждаемому цилиндру, при минимально возможных механических потерях на трение.

Для поршневого кольца, находящегося прижатым к нижней полке поршневой канавки предыдущим тактом, впуск – это время релаксации, одно мгновение. Например, при ходе поршня 80 мм и скорости вращения коленчатого вала 3000 мин-1, скорость перемещения поршня составляет 6 м/с, на двигателях Формулы – 1 средняя скорость поршня 22,5м/с. В течение чрезвычайно краткого промежутка времени, поршневое кольцо должно принять свое естественное положение относительно поршневой канавки и стенки цилиндра. У технологов, по этому поводу, имеется выражение: поршневое кольцо должно «само установиться» по стенке цилиндра. В процессе движения к нижней мертвой точке (НМТ) за счет трения рабочей поверхности кольца о стенку цилиндра, оно смещается к верхней полке поршневой канавки и прижимается к стенке цилиндра собственными силами упругости кольца.

В этом случае, может быть, стоит воспользоваться рекомендацией отечественного ученого Орлина А. С., памятуя о том, что в те давние времена исследователи очень ответственно относились к публикуемым материалам, поэтому в качестве ориентира можно взять рекомендуемое значение давления кольца на стенки цилиндра 0,05…0,3 МПа (0,5…3 кг/см2) и более [6]. Одновременно, как показали исследования, выражение ученого «…газы прижимают кольцо к стенке цилиндра» не совсем корректно по отношению к современным поршневым кольцам, ибо не соответствуют действительности. В этом убеждаешься, когда выясняется, что они потеряли свою упругость и были прижаты к нижней полке поршневой канавки превосходящей газодинамической силой Fо.

В технических условиях на изготовление «кольца поршневого компрессионного» двигателя КАМАЗ 740.1004032 записано: «Нагрузка, приложенная по стрелкам К, при сжатии кольца гибкой лентой до зазора в замке, равного зазору в калибре 120 мм, должна быть 2,3…3,1 кгс». Из этого следует, что, несмотря на очевидную разницу в методиках измерения упругости поршневого уплотнительного кольца, величины рекомендуемых значений в учебнике и разработчиков двигателя КАМАЗ, одного порядка.

Объективности ради, стоит отметить, не имеет смысла ориентироваться ни на рекомендации ученого, ни на практикуемое изготовителями двигателей КАМАЗ значение «нагрузки» при разработке двигателей, имеющих размеры цилиндров порядка 120 мм. В современных двигателях при расчете элементов кинематической системы «цилиндр – поршневое кольцо – поршень» разработчики учитывают величину износа каждого из них, тем самым продлевая гарантийные сроки эксплуатации поршневых колец.

Допускаемая величина износа цилиндра 0,15 мм, увеличивает зазор в замке компрессионного кольца двигателя КАМАЗ до размера 0,94 мм. При износе только рабочей поверхности поршневого кольца на 0,5 мм, зазор в замке кольца увеличивается на 3,14 мм. В больших двигателях допускается износ рабочей поверхности поршневого кольца до 1,0 мм, что соответствует увеличению зазора в замке кольца на 6,28 мм. Итого, общее «допустимое» увеличение зазора в замке компрессионного кольца составит 7,22 мм! Это без термодинамических, т.е. тепловых расширений [4].

Трудно представить себе, как такое «худое» уплотнение, в конструкции которого, по определению, не должно быть каких-либо зазоров, или они должны быть сведены к несущественному минимуму. К сожалению, трудно дискутировать с оппонентами, у которых обезоруживающие аргументы. Во-первых, двигатели «прекрасно» работают, а во-вторых, компрессионные поршневые кольца выполнены точно в соответствии с указаниями отечественных стандартов [8] и [9].

В данном случае возникает вопрос, за счет чего так «хорошо» работает современный двигатель внутреннего сгорания? Ответ лежит буквально на поверхности и, он настолько очевиден, если привести пример из обихода, ответив на подобный вопрос: можно ли решетом набрать ведро воды? Кто бы сомневался, конечно, можно. Только делать это надо очень быстро и достаточно долго, но… уж слишком мал КПД.

А что, у двигателя разве большой КПД? Нет! Может быть, у него небольшая скорость вращения коленчатого вала? Тоже нет. На последних моделях двигателей ВАЗ обороты малого газа уже за 1000 мин-1!

Двигатели Формулы – 1 максимальную мощность достигают на оборотах свыше 22 000 мин-1, при этом, после каждой гонки следует капитальный ремонт двигателя.

Так, какие же выводы следует делать?

Исходя из предназначения рабочего такта «впуск», необходимо помнить, чем надежнее уплотнение между поршнем и цилиндром, исключающий, какой-либо подсос из картера, тем больше степень разряжения пространства над поршнем, тем активнее происходит забор атмосферного воздуха и выполнение расчетных данных.

Понято, что в первую очередь стоит обратить внимание на конструкцию цилиндропоршневой группы и, в первую очередь, на конструкцию, форму и размеры поршневых колец. Непостижимо! При полной смене антуража самого автомобиля, прославленного АвтоВАЗа, вполне конкурентного зарубежным моделям, десятилетиями двигатели оснащаются бессменными поршневыми кольцами, выполняемыми по воле указанных выше стандартов.

Причем стоит отметить, оборудование и технология изготовления поршневых колец не только двигателей АвтоВАЗа, но и двигателей КАМАЗ, ЯМЗ и других производителей, использованы всемирно известной немецкой фирмы Goetze, находящейся под патронажем не менее известного концерна Federal Mogul – «передового европейского производителя прокладок двигателя и поршневых колец». То есть все претензии к некачественному поршневому уплотнению двигателей надо предъявлять не главным конструкторам этих двигателей, а всемирно известным специалистам, с которыми солидарны «главные».

К этому следует добавить следующее обстоятельство. Из рекламы своего последнего достижения производителя элементов ЦПГ «КОСТРОМА – МОТОРДЕТАЛЬ» представил «ncMDChr (нанохром) – покрытие нового поколения наносится на рабочую поверхность верхних компрессионных и маслосъемных поршневых колец»! Особенно шокирует «…и маслосъемных колец», малоэффективных, выполняющих черновую операцию удаления масла со стенки цилиндра, в сплошной масляной среде.

Непонятно, зачем их «нанохромировать», если рабочая поверхность маслосъемного поршневого кольца и без «нано» не изнашивается. При ремонте двигателя, когда необходимо сменить поршневые кольца, наряду с компрессионными кольцами, под «разборку» попадают и маслосъемные кольца, но не потому, что у них «износилась рабочая поверхность», а потому, что отходами масла забивается, иногда коксуется, спиральный расширитель маслосъемного кольца. Особенно это присуще дизельным двигателям. И, без того малоэффективное маслосъемное поршневое кольцо становится вообще неработоспособным.

Это наглядное свидетельство несовершенства широко применяемого маслосъемного кольца с бесполезным «нанохромом». Тем не менее, Кострома довольна, научно-технический прогресс, инновации налицо, все что нужно, чтобы покупатель по достоинству «оценил» эти новации.

Становится очевидным, конструкции компрессионных поршневых колец, подвергнутые автором жесткому анализу, продолжают «жить» и «совершенствоваться». Должно быть понятно, насколько трудно противостоять таким «китам» автопрома отдельно взятому изобретателю, даже если он кандидат технических наук и у него все это опубликовано в отечественных журналах и за рубежом, имеет больше 35-ти патентов на изобретения. Очевидно, достигнутые результаты исследований и предлагаемые меры, для признанных авторитетов автопрома не столь «очевидны», возможно, существуют другие причины, которые к науке никакого отношения не имеют.

Столь низкая эффективность уплотнения между поршнем и цилиндром ставит под сомнение правильность общепринятого конструктивного решения и является одной из важнейших проблем ДВС. Отрицательные последствия такого решения очевидны, двигатель может «заработать» и нормально работать только на огромных скоростях вращения коленчатого вала, форсируя работу двигателя. К чему приводит «форсаж» должно быть известно даже автолюбителю.

Проблема зазоров – это только часть общей проблемы системы «цилиндр – поршневое кольцо – поршень». В данном случае, на рабочем такте «впуск», при отсутствии избыточного давления над поршнем, интерес должны представлять механические потери на трение компрессионных колец, влияющие на КПД двигателя или компрессора. Величина механических потерь на такте «впуск» зависит от величины сил упругости самого поршневого уплотнительного кольца и коэффициента трения двух кинематических элементов: «поршневое кольцо – цилиндр», конкретнее, рабочей поверхности поршневого кольца и стенки цилиндра.

Форма и размеры поршневого уплотнительного кольца на такте «впуск» зависят в основном от расчетной величины минимально необходимой силы упругости самого кольца. Исходя из вышесказанного, следует определить величину силы упругости поршневого кольца и необходимый материал, из которого кольцо должно быть изготовлено.

В процессе анализа причин низкой эффективности ДВС было установлено, что при расчете размеров и допускаемых отклонений в процессе изготовления, в отечественных двигателях, особенно в цилиндропоршневой группе явно, недостает точности, поэтому, как одна из мер повышения эффективности ДВС, была проведена минимизация зазоров в системе «цилиндр – поршневое кольцо – поршень» [10].

Современные поршневые кольца, в зависимости от их размеров, в основном изготавливают стальные и чугунные. Проведенные исследования, разработанная теория проектирования поршневых колец предоставляют возможность изготовления колец из иных металлов и сплавов, а также неметаллических материалов. Например, отечественная фирма ООО «Компрессорные технологии» рекламирует в качестве материала для изготовления уплотнительных и маслосъемных поршневых колец бронзу с различными наполнителями, различные пластмассы.

Можно уже сейчас, на стадии исследований, определив форму и размеры уплотнительного (компрессионного) поршневого кольца, используя результаты теоретических исследований, рекомендовать в качестве материала для заготовки кольца различные сплавы бронзы и медные сплавы.


Рабочий такт «сжатие» свежего заряда воздуха, топливовоздушной смеси и ее воспламенение.

Рабочий такт «сжатие» принципиально отличается от предыдущего такта «впуск» тем, что получив поршневое кольцо, прижатое к верхней полке поршневой канавки и к стенке цилиндра силой собственной упругости, в начале движения поршня в верхнее положение, поршневое кольцо смещается вниз. Силы трения рабочей поверхности поршневого кольца о стенку цилиндра, а также появляющееся избыточное давление Р0 над поршнем и в поршневой канавке, дополнительно усиливают контакт поршневого кольца с нижней полкой поршневой канавки и стенкой цилиндра.

Очень важно отметить, находясь в нижней мертвой точке в относительно свободном состоянии, поршневое кольцо фиксируется в этом положении, появляющимися изменениями и, в первую очередь, возрастающим давлением над поршнем. Причем, как покажет последующее исследование, это положение уплотнительного поршневого кольца относительно поршня и цилиндра, будет оставаться неизменным на оставшихся тактах рабочего цикла двигателя.

Итак, с началом движения поршня в верхнее положение на рабочем такте «сжатие» вступает в работу газодинамика, согласно, представленной выше схемы на рис. 1. На рабочем такте «впуск» конструкция поршневого уплотнительного кольца, его форма и размеры, не имели большого значения, решая основную задачу эффективного уплотнения свободного пространства между поршнем и цилиндром при минимально возможных механических потерях на трение.

На данном этапе разработчик должен решить задачу правильного использования газодинамических сил, которые позволят сохранить собственные упругие силы поршневого кольца, то есть упругость, тем самым гарантируя его работоспособность [11].

Для решения этой задачи автор разработал формулу, использование которой в расчетах геометрических характеристик уплотнительного поршневого кольца позволяет нейтрализовать отрицательное влияние огромных газодинамических сил на работу поршневого кольца. Эта формула решила историческую несправедливость субъективного решения при назначении высоты поршневого кольца, хотя и исходило это решение от авторитетного немецкого ученого [5].

Предлагалось «выбрать» для проектируемого двигателя свободный размер высоты уплотнительного поршневого кольца в ничем не обоснованном диапазоне размеров, руководствуясь всего лишь рекомендацией ученого авторитета: «Обыкновенно отношение h/a не должно быть ниже 0,5 – 0,45» (h – высота поршневого кольца, а – радиальная толщина кольца).

Эти рекомендации отечественные ученые, а за ними и разработчики поршневых машин, приняли за аксиому, которая, очевидно, в те далекие шестидесятые годы прошлого столетия, не требовала каких-либо доказательств, экспериментальных и прочих исследований, которые должны были проведены при столь принципиальном решении. Но… Хотели, как лучше…

В результате, вместо непонятного диапазона разброса размеров «рекомендаций» высоты поршневого кольца, появились «четкие» указания отечественных стандартов. Конструкторам уже не требовалось тратить время на какие-то расчеты высоты уплотнительного кольца, тем самым с них, а также со всех «генеральных» и «главных» снималась ответственность за некачественную продукцию.

Например, действующий ГОСТ 621—87 для диаметров цилиндров 88 мм и 130 мм «определил» размер высоты уплотнительных колец для обоих 2,0 мм. Непостижимо! Неужели при разработке столь ответственного документа, как технический стандарт, было непонятно, что от заданного размера диаметра цилиндра, равного внешнему диаметру поршневого кольца, зависят все остальные геометрические характеристики кольца?



скачать книгу бесплатно

страницы: 1 2 3 4