А. Якорева.
Метрология, стандартизация и сертификацияскачать книгу бесплатно 1. Предмет и задачи метрологииПод метрологией подразумевается наука об измерениях, о существующих средствах и методах, помогающих соблюсти принцип их единства, а также о способах достижения требуемой точности. Происхождение самого термина «метрология» возводят к двум греческим словам: metron, что переводится как «мера», и logos – «учение». Бурное развитие метрологии пришлось на конец ХХ в. Оно неразрывно связано с развитием новых технологий. До этого метрология была лишь описательным научным предметом. Таким образом, можно сказать, что метрология изучает: 1) методы и средства для учета продукции по следующим показателям: длине, массе, объему, расходу и мощности; 2) измерения физических величин и технических параметров, а также свойств и состава веществ; 3) измерения для контроля и регулирования технологических процессов. Выделяют несколько основных направлений метрологии: 1) общая теория измерений; 2) системы единиц физических величин; 3) методы и средства измерений; 4) методы определения точности измерений; 5) основы обеспечения единства измерений, а также основы единообразия средств измерения; 6) эталоны и образцовые средства измерений; 7) методы передачи размеров единиц от образцов средств измерения и от эталонов рабочим средствам измерения. Следует различать также объекты метрологии: 1) единицы измерения величин; 2) средства измерений; 3) методики, используемые для выполнения измерений и т. д. Метрология включает в себя: во-первых, общие правила, нормы и требования, во-вторых, вопросы, нуждающиеся в государственном регламентировании и контроле. И здесь речь идет о: 1) физических величинах, их единицах, а также об их измерениях; 2) принципах и методах измерений и о средствах измерительной техники; 3) погрешностях средств измерений, методах и средствах обработки результатов измерений с целью исключения погрешностей; 4) обеспечении единства измерений, эталонах, образцах; 5) государственной метрологической службе; 6) методике поверочных схем; 7) рабочих средствах измерений. В связи с этим задачами метрологии становятся: усовершенствование эталонов, разработка новых методов точных измерений, обеспечение единства и необходимой точности измерений. 2 Классификация измеренийКлассификация средств измерений может проводиться по следующим критериям. 1. По характеристике точности измерения делятся на равноточные и неравноточные. Равноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерений (СИ), обладающих одинаковой точностью, в идентичных исходных условиях. Неравноточными измерениями физической величины называется ряд измерений некоторой величины, сделанных при помощи средств измерения, обладающих разной точностью, и (или) в различных исходных условиях. 2. По количеству измерений измерения делятся на однократные и многократные.3. По типу изменения величины измерения делятся на статические и динамические. Статические измерения – это измерения постоянной, неизменной физической величины. Динамические измерения – это измерения изменяющейся, непостоянной физической величины. 4. По предназначению измерения делятся на технические и метрологические. Технические измерения – это измерения, выполняемые техническими средствами измерений. Метрологические измерения – это измерения, выполняемые с использованием эталонов. 5. По способу представления результата измерения делятся на абсолютные и относительные. Абсолютные измерения – это измерения, которые выполняются посредством прямого, непосредственного измерения основной величины и (или) применения физической константы. Относительные измерения – это измерения, при которых вычисляется отношение однородных величин, причем числитель является сравниваемой величиной, а знаменатель – базой сравнения (единицей). 6. По методам получения результатов измерения делятся на прямые, косвенные, совокупные и совместные. Прямые измерения – это измерения, выполняемые при помощи мер, т. е. измеряемая величина сопоставляется непосредственно с ее мерой. Примером прямых измерений является измерение величины угла (мера – транспортир). Косвенные измерения – это измерения, при которых значение измеряемой величины вычисляется при помощи значений, полученных посредством прямых измерений. Совокупные измерения – это измерения, результатом которых является решение некоторой системы уравнений. Совместные измерения – это измерения, в ходе которых измеряется минимум две неоднородные физические величины с целью установления существующей между ними зависимости. 3. Основные характеристики измеренийВыделяют следующие основные характеристики измерений: 1) метод, которым проводятся измерения; 2) принцип измерений; 3) погрешность измерений; 4) точность измерений; 5) правильность измерений; 6) достоверность измерений. Метод измерений – это способ или комплекс способов, посредством которых производится измерение данной величины, т. е. сравнение измеряемой величины с ее мерой согласно принятому принципу измерения. Существует несколько критериев классификации методов измерений. 1. По способам получения искомого значения измеряемой величины выделяют: 1) прямой метод (осуществляется при помощи прямых, непосредственных измерений); 2) косвенный метод. 2. По приемам измерения выделяют: 1) контактный метод измерения; 2) бесконтактный метод измерения. Контактный метод измерения основан на непосредственном контакте какой-либо части измерительного прибора с измеряемым объектом. При бесконтактном методе измерения измерительный прибор не контактирует непосредственно с измеряемым объектом. 3. По приемам сравнения величины с ее мерой выделяют: 1) метод непосредственной оценки; 2) метод сравнения с ее единицей. Метод непосредственной оценки основан на применении измерительного прибора, показывающего значение измеряемой величины. Метод сравнения с мерой основан на сравнении объекта измерения с его мерой. Принцип измерений – это некое физическое явление или их комплекс, на которых базируется измерение. Погрешность измерения – это разность между результатом измерения величины и настоящим (действительным) значением этой величины. Точность измерений – это характеристика, выражающая степень соответствия результатов измерения настоящему значению измеряемой величины. Правильность измерения – это качественная характеристика измерения, которая определяется тем, насколько близка к нулю величина постоянной или фиксировано изменяющейся при многократных измерениях погрешности (систематическая погрешность). Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений. 4 Понятие о физической величине Значение систем физических единицФизическая величина является понятием как минимум двух наук: физики и метрологии. По определению физическая величина представляет собой некое свойство объекта, процесса, общее для целого ряда объектов по качественным параметрам, отличающееся, однако, в количественном отношении (индивидуальная для каждого объекта). Есть целый ряд классификаций, созданных по различным признакам. Основными из них является деления на: 1) активные и пассивные физические величины – при делении по отношению к сигналам измерительной информации. Причем первые (активные) в данном случае представляют собой величины, которые без использования вспомогательных источников энергии имеют вероятность быть преобразованными в сигнал измерительной информации. А вторые (пассивные) представляют собой такие величины, для измерения которых нужно использовать вспомогательные источники энергии, создающие сигнал измерительной информации; 2) аддитивные (или экстенсивные) и неаддитивные (или интенсивные) физические величины – при делении по признаку аддитивности. Считается, что первые (аддитивные) величины измеряются по частям, кроме того, их можно точно воспроизводить с помощью многозначной меры, основанной на суммировании размеров отдельных мер. А вторые (неаддитивные) величины прямо не измеряются, так как они преобразуются в непосредственное измерение величины или измерение путем косвенных измерений. В 1791 г. Национальным собранием Франции была принята первая в истории система единиц физических величин. Она представляла собой метрическую систему мер. В нее входили: единицы длин, площадей, объемов, вместимостей и веса. А в их основу были положены две общеизвестные ныне единицы: метр и килограмм. В основу своей методики ученый заложил три основные независимые друг от друга величины: массу, длину, время. А в качестве основных единиц измерения данных величин математик взял миллиграмм, миллиметр и секунду, поскольку все остальные единицы измерения можно с легкостью вычислить с помощью минимальных. Так, на современном этапе развития выделяют следующие основные системы единиц физических величин: 1) система СГС (1881 г.); 2) система МКГСС (конец XIX в.); 3) система МКСА (1901 г.) 5. Международная система единицРешениями Генеральной конференции по мерам и весам приняты такие определения основных единиц измерения физических величин: 1) метр считается длинной пути, который проходит свет в вакууме за 1/299 792 458 долю секунды; 2) килограмм считается приравненным к существующему международному прототипу килограмма; 3) секунда равна 919 2631 770 периодам излучения, соответствующего тому переходу, который происходит между двумя так называемыми сверхтонкими уровнями основного состояния атома Cs133; 4) ампер считается мерой той силы неизменяющегося тока, вызывающего на каждом участке проводника длиной 1 м силу взаимодействия при условии прохождения по двум прямолинейным параллельным проводникам, обладающим такими показателями, как ничтожно малая площадь кругового сечения и бесконечная длина, а также расположение на расстоянии в 1 м друг от друга в условиях вакуума; 5) кельвин равен 1/273,16 части термодинамической температуры, так называемой тройной точки воды; 6) моль равен количеству вещества системы, в которую входит такое же количество структурных элементов, что и в атомы в С12 массой 0,01 2 кг. Кроме того, Международная система единиц содержит две достаточно важные дополнительные единицы, необходимые для измерения плоского и телесного углов. Так, единица плоского угла – это радиан, или сокращенно рад, представляющий собой угол между двух радиусов окружности, длина дуги между которыми равняется радиусу окружности. Если речь идет о градусах, то радиан равен 57°17' 48''. А стерадиан, или ср, принимаемый за единицу телесного угла, представляет собой, соответственно, телесный угол, расположение вершины которого фиксируется в центре сферы, а площадь, вырезаемая данным углом на поверхности сферы, равна площади квадрата, сторона которого равна длине радиуса сферы. Другие дополнительные единицы СИ используются для формирования единиц угловой скорости, а также углового ускорения и т. д. Радиан и стерадиан используются для теоретических построений и расчетов, поскольку большая часть значимых для практики значений углов в радианах выражаются трансцендентными числами. К внесистемным единицам относятся следующие: 1) за логарифмическую единицу принята десятая часть бела, децибел (дБ); 2) диоптрия – сила света для оптических приборов; 3) реактивная мощность – Вар (ВА); 4) астрономическая единица (а. е.) – 149,6 млн км; 5) световой год, под которым понимается такое расстояние, которое луч света проходит за 1 год; 6) вместимость – литр; 7) площадь – гектар (га). Существуют также единицы, вообще не входящие в СИ. Это в первую очередь такие единицы, как градус и минута. Все остальные единицы считаются производными, которые согласно Международной системе единиц образуются с помощью самых простейших уравнений с использованием величин, числовые коэффициенты которых приравнены к единице. Если в уравнении числовой коэффициент равен единице, производная единица называется когерентной. 6. Физические величины и измеренияОбъектом измерения для метрологии, как правило, являются физические величины. Физические величины используется для характеристики различных объектов, явлений и процессов. Разделяют основные и производные от основных величины. Семь основных и две дополнительных физических величины установлены в Международной системе единиц. Это длина, масса, время, термодинамическая температура, количество вещества, сила света и сила электрического тока, дополнительные единицы – это радиан и стерадиан. У физических величин есть качественные и количественные характеристики. Качественное различие физических величин отражается в их размерности. Обозначение размерности установлено международным стандартом ИСО, им является символ dim*. Количественная характеристика объекта измерения – это его размер, полученный в результате измерения. Самый элементарный способ получить сведения о размере определенной величины объекта измерения – это сравнить его с другим объектом. Результатом такого сравнения не будет точная количественная характеристика, оно позволит лишь выяснить, какой из объектов больше (меньше) по размеру. Сравниваться могут не только два, но и большее число размеров. Если размеры объектов измерения расположить по возрастанию или по убыванию, то получится шкала порядка. Процесс сортировки и расположения размеров по возрастанию или по убыванию по шкале порядка называется ранжированием. Для удобства измерений определенные точки на шкале порядка фиксируются и называются опорными, или реперными точками. Фиксированным точкам шкалы порядка могут ставиться в соответствие цифры, которые часто называют баллами. У реперных шкал порядка есть существенный недостаток: неопределенная величина интервалов между фиксированными реперными точками. Самым оптимальным вариантом является шкала отношений. Шкалой отношений является, например, шкала температуры Кельвина. На данной шкале есть фиксированное начало отсчета – абсолютный ноль (температура, при которой прекращается тепловое движение молекул). Основное преимущество шкалы отношений состоит в том, что с ее помощью можно определить, во сколько раз один размер больше или меньше другого. Размер объекта измерения может быть представлен в разных видах. Это зависит от того, на какие интервалы разбита шкала, с помощью которой измеряется данный размер. Например, время движения может быть представлено в следующих видах: T = 1 ч = 60 мин = 3600 с. Это значения измеряемой величины. 1, 60, 3600 – это числовые значения данной величины. 7. Эталоны и образцовые средства измеренийВсе вопросы, связанные охранением, применением и созданием эталонов, а также контроль за их состоянием, решаются по единым правилам, установленным ГОСТом «ГСИ. Эталоны единиц физических величин. Основные положения» и ГОСТом «ГСИ. Эталоны единиц физических величин. Порядок разработки и утверждения, регистрации, хранения и применения». Классифицируются эталоны по принципу подчиненности. По этому параметру эталоны бывают первичные и вторичные. Вторичный эталон воспроизводит единицу при особенных условиях, заменяя при этих условиях первичный эталон. Он создается и утверждается для целей обеспечения минимального износа государственного эталона. Вторичные эталоны могут делиться по признаку назначения. Так, выделяют: 1) эталоны-копии, предназначенные для передачи размеров единиц рабочим эталонам; 2) эталоны-сравнения, предназначенных для проверки невредимости государственного эталона, а также для целей его заменяя при условии его порчи или утраты; 3) эталоны-свидетели, предназначенные для ели-чения эталонов, которые по ряду различных причин не подлежат непосредственному сличению друг с другом; 4) рабочие эталоны, которые воспроизводят единицу от вторичных эталонов и служат для передачи размера эталону более низкого разряда. Вторичные эталоны создают, утверждают, хранят и применяют министерства и ведомства. \ Существует также понятие «эталон единицы», под которым подразумевают одно средство или комплекс средств измерений, направленных на воспроизведение и хранение единицы для последующей трансляции ее размера нижестоящим средствам измерений, выполненных по особой спецификации и официально утвержденных в установленном порядке в качестве эталона. Есть два способа воспроизведения единиц по признаку зависимости от технико-экономических требований: 1) централизованный способ – с помощью единого для целой страны или же группы стран государственного эталона. Централизованно воспроизводятся все основные единицы и большая часть производных; 2) децентрализованный способ воспроизведения – применим к производным единицам, сведения о размере которых не передаются непосредственным сравнением с эталоном. Существует также понятие «образцовые средства измерений», которые используются для закономерной трансляции размеров единиц в процессе поверки средств измерения и используются лишь в подразделениях метрологической службы. Разряд образцового средства измерения определяется в ходе измерений метрологической аттестации одним из органов Государственного комитета по стандартам. 8. Средства измерений и их характеристикиВ научной литературе средства технических измерений делят на три большие группы. Это: меры, калибры и универсальные средства измерения, к которым относятся измерительные приборы, контрольно-измерительные приборы (КИП), и системы. 1. Мера представляет собой такое средство измерений, которое предназначается для воспроизведения физической величины положенного размера. 2. Калибры представляют собой некие устройства, предназначение которых заключается в использовании для контролирования и поиска в нужных границах размеров, взаиморасположения поверхностей и формы деталей. 3. Измерительный прибор, представленный в виде устройства, вырабатывающего сигнал измерительной информации в форме, понятной для восприятия наблюдателей. 4. Измерительная система, понимаемая как некая совокупность средств измерений и неких вспомогательных устройств, которые соединяются между собой каналами связи. 5. Универсальные средства измерения, предназначение которых находится в использовании для определения действительных размеров. Любое универсальное измерительное средство характеризуется назначением, принципом действия. При контрольном измерении угловых и линейных показателей применяют прямые измерения, реже встречаются относительные, косвенные или совокупные измерения. В научной литературе среди прямых методов измерений выделяют, как правило, следующие: 1) метод непосредственной оценки, представляющий собой такой метод, при котором значение величины определяют по отсчетному устройству измерительного прибора; 2) метод сравнения с мерой, под которым понимается метод, при котором данную величину возможно сравнить с величиной, воспроизводимой мерой; 3) метод дополнения, под которым обычно подразумевается метод, когда значение полученной величины дополняется мерой этой же величины с тем, чтобы на используемый прибор для сравнения действовала их сумма, равная заранее заданному значению; 4) дифференциальный метод, который характеризуется измерением разности между данной величиной и известной величиной, воспроизводимой мерой; 5) нулевой метод, который, по сути, аналогичен дифференциальному, но разность между данной величиной и мерой сводится к нулю; 6) метод замещения, представляющий собой сравнительный метод с мерой, в которой измеряемую величину заменяют известной величиной, которая воспроизводится мерой. Существуют и нестандартизованные методы. 1) метод противопоставления; 2) метод совпадений. 9.Классификация средств измеренияСредство измерения (СИ) – это техническое средство или совокупность средств, применяющееся для осуществления измерений и обладающее нормированными метрологическими характеристиками. При помощи средств измерения физическая величина может быть не только обнаружена, но и измерена. Средства измерения классифицируются по следующим критериям: 1) по способам конструктивной реализации; 2) по метрологическому предназначению. По способам конструктивной реализации средства измерения делятся на: 1) меры величины; 2) измерительные преобразователи; 3) измерительные приборы; 4) измерительные установки; 5) измерительные системы. Меры величины – это средства измерения определенного фиксированного размера, многократно используемые для измерения. Выделяют: 1) однозначные меры; 2) многозначные меры; 3) наборы мер. К однозначным мерам принадлежат стандартные образцы (СО). Различают два вида стандартных образцов: 1) стандартные образцы состава; 2) стандартные образцы свойств. Стандартный образец состава или материала – это образец с фиксированными значениями величин, количественно отражающих содержание в веществе или материале всех его составных частей. Стандартный образец свойств вещества или материала – это образец с фиксированными значениями величин, отражающих свойства вещества или материала (физические, биологические и др.). Каждый стандартный образец в обязательном порядке должен пройти метрологическую аттестацию в органах метрологической службы, прежде чем начнет использоваться. Стандартные образцы могут применяться на разных уровнях и в разных сферах. Выделяют: 1) межгосударственные СО; 2) государственные СО; 3) отраслевые СО; 4) СО организации (предприятия). скачать книгу бесплатно |