Дипак Чопра.

Ты – Космос. Как открыть в себе вселенную и почему это важно



скачать книгу бесплатно

Все ли относительно?

В 2015 году мир отметил столетнюю годовщину рождения главного труда Эйнштейна – «Общей теории относительности». Ни один из ее постулатов не прошел даром, и дело не в утверждениях, что реально, а что нет. Дело в том, что все мы признаем относительность в повседневной, обычной жизни, причем не называя ее относительностью. Если ваш малыш разрисовывает стену карандашами, бросает еду на пол, писает в кровать, то, скорее всего, вы будете относиться к его проделкам куда мягче, чем если бы это соседский малыш пришел к вам домой и натворил там тех же дел. Мы принимаем как должное, что наш ум лжет нам о том, что говорят наши чувства. Скажем, вы собираетесь на вечеринку, и вам сказали, что Икса, который тоже там будет, судят за несколько краж со взломом в вашем районе. На вечеринке Икс подходит к вам и без всякой задней мысли спрашивает, где вы живете. Вы слышите это, и в вашем мозгу рождается совсем иной ответ, нежели тот, который вы дали бы, спроси у вас адрес человек, которого вы считаете невинным.

Эйнштейн сумел увидеть умом, что скорость не покажется одинаковой тому, кто движется по световому лучу, и тому, кто находится на другом движущемся предмете. Поскольку скорость чего бы то ни было измеряется через время, в течение которого преодолевается определенное расстояние, время и пространство тоже оказываются относительными. Очень скоро выкладки Эйнштейна усложнились – ему понадобилось десять лет, с 1905 по 1915 год, консультироваться у математиков, чтобы найти корректные формулировки для своей теории. В итоге «Общая теория относительности» была провозглашена величайшим научным открытием, сделанным одним человеком. Но нельзя забывать, что Эйнштейн взломал код времени, пространства, материи и энергии, используя свой опыт визуализации.

Доказывает ли это, что вы сами сможете творить собственную реальность в соответствии с личным опытом? Конечно! Каждый день вы пропускаете реальность через множество фильтров, принадлежащих только вам. Тех, кого вы любите, не любит кто-то другой. Цвет, который вам приятен, кому-то кажется безобразным. Собеседование, которое для вас будет стрессом, для другого, более уверенного в себе человека не представляет никакой угрозы. Настоящий вопрос не в том, творите ли вы реальность – все ее творят, но в том, насколько далеко вы в этом заходите. Есть ли вообще вокруг нас что бы то ни было, что от нас не зависит?

Наш ответ – нет. Вся известная нам реальность – от субатомной частицы до миллиардов галактик, от Большого взрыва до возможного конца света – наблюдаема и может быть наблюдаема человеческими существами. Если что-то реальное и лежит за пределами нашего опыта, мы никогда об этом не узнаем. Давайте проясним один момент: нашу позицию не стоит считать ни ненаучной, ни антинаучной. Когда Эйнштейн видел своим умом изображения, должные перевернуть пространство и время, другие пионеры квантовой физики разоблачали реальность еще радикальнее. Теория относительности создана одним человеком, даже пусть и с помощью коллег, а квантовую теорию создавало великое множество европейских физиков.

Твердые предметы стали представляться энергетическими облаками. Атом при ближайшем рассмотрении оказался по преимуществу пустым (электрон на орбитали атома водорода, к примеру, представился бы бейсбольным мячиком на орбите в 93 миллионах миль от земли, если увеличить масштаб).

Шаг за шагом квантовая революция, разразившаяся при жизни Эйнштейна, развенчивала каждую частицу того, что казалось надежным. Если подумать, то последствия были разрушительны. Известен афоризм признанного британского физика и астронома сэра Артура Эддингтона, наблюдавшего за особенностями процесса в квантовой области науки: «Творится что-то неведомое, и мы не ведаем что». Эти слова считают шуткой об ушедшей эпохе. Эддингтон, одним из первых подтвердивший, что теория относительности соответствует на самом деле реальности, жил до того, как физики сосредоточились на тотальном объяснении космоса, «всеобщей теории всего», которая, по некоторым представлениям, уже не за горами.

Но в шутке (на которые Эддингтон действительно был мастер) должна быть и своя правда. Даже такие уверенные умы, как Стивен Хокинг, так или иначе отказались от «теории всего», сосредоточившись на небольших теориях, объясняющих те или иные аспекты реальности, но не всю ее. Но что, если истина в ином: реальность настолько загадочна, что в ее истолковании ошибается каждый, и ошибается с самого своего рождения?

Кванты и планы

Теория относительности была столь умопомрачительной, что массовому сознанию она представлялась последним и величайшим достижением физики. Но это было далеко от истины. История о том, что реально, а что нет, совершила еще один неудобный поворот, известный теперь как квантовая революция. Она не была независимой от работ Эйнштейна: скорее, это отросток формулы E = mc?, утверждающей, что количество энергии внутри любой части материи равняется массе самого объекта, помноженной на скорость света в квадрате. В этом утверждении содержится огромный объем знаний, применимых к столь различным явлениям, как расщепление атома и черные дыры.

Равное – значит, такое же, и, следовательно, энергия есть то же, что материя, или масса эквивалентна энергии. Трудно представить себе нечто более поразительное, поскольку с позиции пяти чувств материя (песчаная дюна, буханка хлеба, эвкалиптовое дерево) совершенно не похожа на энергию (молния, радуга, магнетизм, движущий стрелку компаса). Спустя годы было доказано, что формула Эйнштейна все-таки верна. Но нельзя сказать, что разгаданы все ее загадки. Изобразив природу полностью преобразуемой, с материей, постоянно превращающейся в энергию, формула поставила вопрос: а как же это работает?

К неудовольствию верующих в реальность песчаных дюн, деревьев и радуг, оказалось, что строительные блоки природы – субатомные частицы – иногда ведут себя как материя, а иногда и как энергия. Самый известный пример – свет. Когда он ведет себя как энергия, он – волна. Волна имеет длину; таким образом, радуга или любая призма подтверждают то, что обычный солнечный белый свет – на самом деле смесь нескольких цветов, и у каждого из них своя длина волны. Но когда свет ведет себя как материя, он движется в виде частиц – фотонов, которые сами по себе суть порции энергии. «Порция» по-латыни – «квант»; это название и избрал Макс Планк, немецкий физик, начавший квантовую революцию в 1900 году и получивший Нобелевскую премию в 1918 году.

E = mc? значит, что реальность может быть сведена к одному уравнению (во что-то подобное и верил к концу жизни Эйнштейн), но его прорыв привел к столкновению с квантовой теорией, уравнения которой с относительностью несовместимы. С таким противоречием физики сталкиваются даже сейчас, и оно – причина разрыва в ткани повествования о том, что реально, а что нет. Это не то чтобы потрясающе сложно: речь о больших вещах в сравнении с малыми. Все большие вещи – от ньютоновского яблока до далекой огромной галактики – ведут себя так, как предписывает им эйнштейновская теория относительности. Малые же вещи, вроде кванта или субатомной частицы, подчиняются особому набору правил, достаточно странных, или, по определению Эйнштейна, «жутких».

В детали этого «жуткого поведения» мы вникнем позже, а сейчас нас волнует большое. К концу двадцатых годов все поняли, что относительность и квантовая теория невероятно успешны, каждая по-своему, но стало очевидно и другое: они не взаимосвязаны. Вопросом дня были гравитация и ее невероятные нелинейные (искривленные) эффекты. Эйнштейн произвел революцию в изучении гравитации, используя визуальные образы, чтобы получить новые ответы на вопросы. Мы уже рассматривали образ тела в свободном падении; есть и другие. К примеру, Эйнштейн представил себе пассажира, стоящего в лифте, который, ускоряясь, трогается вверх. Пассажиру кажется, что сам он становится тяжелее, но он не знает почему, поскольку не видит ничего за пределами лифта. С его точки зрения, дело может быть и в воздействии притяжения, и в эффекте ускорения. Оба объяснения верны, а поэтому, утверждает Эйнштейн, у силы притяжения никаких привилегий здесь нет.

Вместо этого притяжение должно быть включено в череду трансформаций природы: так и только так преобразовываться будет не одна лишь материя в энергию или энергия в материю. Притяжение из силы постоянной величины стало искривлением пространства-времени, варьирующим от места к месту. Представьте, что вы идете зимним днем по заснеженной равнине и, внезапно поскользнувшись, падаете в дренажную канаву, которой не увидели под снегом. Вы движетесь быстрее, чем когда шли по снегу, и ваш вес увеличивается по мере того, как вы оказываетесь ближе ко дну канавы. Примерно таким же образом пространство искривляется вокруг больших предметов вроде планет или звезд, и, когда свет, идущий по прямой, натыкается на подобный предмет, траектория света, по теории Эйнштейна, тоже искривляется. (Подтверждение этому было поистине восхитительным, но об этом мы еще поговорим дальше.)

Одним движением Эйнштейн превратил гравитацию из силы в явление космической геометрии. Но при квантовом подходе к проблеме ученые-физики все еще рассматривают силу притяжения как одну из четырех фундаментальных сил природы. Три другие – электромагнетизм, слабое и сильное ядерные взаимодействия – ведут себя, по наблюдениям, так же, как свет: то как волна, то как частица. Но гравитационных волн или гравитационных частиц, так называемых гравитонов, в природе никто не обнаруживал. В газетные заголовки попадали заявления о гравитационных волнах, образовавшихся во Вселенной сразу после Большого взрыва, однако они не были ничем подтверждены.

Большинство физиков признает, что в истории реальности существует некий раскол. Следствие же этого раскола – примечательная возможность. Наш разум, в том числе поток наших ежедневных помыслов, может влиять на реальность «где-то там». Потому, возможно, малые вещи и ведут себя не так, как ведут себя большие. К примеру, попробуйте представить себе лимон, «увидеть» его неровную желтую поверхность, маслянистую кожуру. А теперь вы видите нож, которым этот лимон разрезают пополам. Капельки лимонного сока выступают наружу, когда нож проходит сквозь бледную плоть лимона…

Ну как, у вас потекла слюна от этой визуализации?

Предсказуемая реакция. Даже мысленный образ лимона может вызвать такую же реакцию организма, какую вызывает настоящий лимон. Вот так событие «здесь» может вызвать событие «там». Молекулы, передающие сообщение от мозга к слюнным железам, ничем не отличаются от подобных молекул в камнях или деревьях. Тело, в конце концов, тоже физический объект. Мы постоянно проецируем свой разум на материю. Каждая мысль вызывает физические изменения в мозге и далее – вплоть до изменений активности генов. Микровольты электричества стреляют по миллиардам нейронов, в то время как в синапсах, или промежутках между клетками мозга, протекают химические процессы. Эти явления не подчиняются общему готовому шаблону. Все сдвигается в соответствии с тем, как именно вы познаете мир.

Разум выше материи – это утверждение разрушило все научные планы, показав, что наблюдение – просто взгляд! – не пассивно. Если оглядеть комнату, где вы сейчас сидите, окажется, что вещи, которые вы видите – стены, мебель, светильники, книги, не изменяются. Ваш взгляд, казалось бы, совершенно пассивен. Но если говорить о происходящем «здесь», это не так! Зрительная оболочка вашего мозга меняет активность, когда ваш взгляд натыкается на те или иные предметы. Если вам случится увидеть в углу мышь, в вашем мозге произойдет вспышка активности. Все принимают как должное то, что вне нашего мозга видеть что-либо – обязательно пассивный процесс. Здесь-то квантовая механика всех и расстраивает.

Если перейти от больших вещей к малым и наблюдать протоны, электроны, другие субатомные частицы, то возникнет загадочный феномен, называемый «эффектом наблюдателя». Мы уже упоминали, что субатомные частицы существуют в двух аспектах – как частицы и как волны, но тем и другим одновременно они быть не могут. Согласно квантовой теории, когда фотон или электрон никто не наблюдает, он ведет себя как волна. Свойство волн – то, что они распространяются повсюду; нет никакого точно заданного направления, куда должен идти фотон в волноподобном состоянии. Но как только электрон или фотон оказывается под наблюдением, он ведет себя как частица, имеет местоположение, а также и другие свойства, такие как заряд и импульс.

Оставим на потом специфику принципа неопределенности, формулы, управляющей отношениями волн и частиц. Сконцентрируемся на том, что очень скромные вещи «там» можно изменить, если просто на них смотреть (а это уже умственное действие). Обыденному сознанию трудно это принять, потому что мы привыкли считать, что смотреть – действие пассивное. Но вернемся к мыши в углу. Когда вы ее замечаете, она зачастую замирает и тут же быстро убегает в норку, как будто хочет пережить возможное нападение. Ваш взгляд вызвал такую реакцию просто потому, что мышь поняла, что вы на нее смотрите! Может ли фотон или электрон почувствовать взгляд ученого, наблюдающего за ним?

Сам такой вопрос может быть нелепым для ученых, которые в подавляющем большинстве считают, что разума в природе не было, по крайней мере до тех пор, пока не появилась и не развилась человеческая жизнь. Природа, согласно научной мысли многих столетий, вещь одновременно безумная и случайная. Но как тогда мог такой выдающийся современный физик, как Фримен Дайсон, сказать вот это:

«Атомы в лаборатории – вещь странная: они ведут себя не как инертные вещества, но как активные существа. Они делают непредсказуемый выбор из альтернативных возможностей согласно законам квантовой механики. Похоже, что разум, проявляющийся в способности делать выбор, в какой-то мере присущ каждому атому»?

Заявление Дайсона – дерзость вдвойне. Он утверждает: атомы делают выбор, что уже есть признак разума. Он говорит о том, что Вселенная сама по себе разумна! Это своего рода связь между поведением малых и больших вещей. Вместо того, что атомы тотально отличаются от деревьев, облаков, слонов и планет, утверждается, что они только кажутся разными. Если посмотреть на частички пыли в лучах света, их движение покажется совершенно беспорядочным; так их и опишет физика движения тела. Но понятнее все сделает другая визуализация.

Представьте, что вы сидите на смотровой площадке Эмпайр Стейт Билдинг, а с вами рядом – физик. Вы оба смотрите на улицу под вами. На каждом углу одни машины сворачивают направо, а другие – налево. Случайная модель? Да, ответит физик. Статистический массив можно отразить на карте, чтобы показать, что за некоторый период времени налево и направо будет поворачивать примерно одинаковое количество машин. При этом никто не сможет достоверно предсказать, направо или налево повернет следующая машина: вероятность – 50:50. Но вы знаете: внешнее здесь обманчиво. У каждого водителя в каждой машине есть свои причины свернуть направо или же налево, а следовательно, ни один из поворотов не случаен. Нужно просто знать разницу между вероятностью и выбором.

В науке значение вероятности столь абсолютизировано и привязано к выбору, что в применении к физическим объектам это оказывается абсурдом. Посмотрим на нашу планету. Все элементы на Земле, которые по тяжести равны железу или тяжелее него (в том числе многие тяжелые металлы и радиоактивные элементы, такие как уран и плутоний), возникли во время взрывов гигантских звезд, известных как сверхновые.

Без таких взрывов даже невероятного тепла внутри обычной звезды, вроде нашего Солнца, недостаточно, чтоб связать атомы в более тяжелые элементы. Когда сверхновая взрывается, эти элементы становятся межзвездной пылью. Пыль собирается в облака, и, в случае нашей Солнечной системы, эти облака в конечном счете становятся планетами. Расплавленное ядро Земли состоит из железа, но внутри него существуют токи, несущие часть железа вблизи поверхности планеты. Немного железа даже вымывается в океаны и верхние слои почвы. Оттуда нам достается то железо, которое делает кровь красной и позволяет дышать, получая кислород из воздуха.

Хотя плавающие пылинки в лучах солнечного света в точности подобны звездной пыли, которая там и сям плавает среди галактик, некоторые из звездных пылинок обрели уникальную судьбу и сделались важной стороной земной жизни. Вы, будучи человеком, действуете с целью, значением, направлением и намерением – то есть абсолютно не случайно. Как случайное становится намеренным? Как из бессмысленной пыли получилось человеческое тело, с помощью которого мы достигаем всего значимого в жизни?

Ответом на вопрос, если Фримен Дайсон прав, будет разум. Если разум – связь между большим и малым, то делить события во Вселенной на случайные и неслучайные – значит упускать суть. Она в том, что разум может существовать повсюду, и наши жизни – отражение этого факта.

Поэт находит обходной путь

Поскольку Эйнштейн для многих синоним ошеломляюще великого ума, большинство людей не понимает, что после великого триумфа общей теории относительности, случившегося лишь в середине тридцатых, Эйнштейн сделал ставку не на ту сторону современной физики: он не смог согласиться с ее выводами. Своим знаменитым утверждением «Я не верю, что Бог играл в кости со Вселенной» Эйнштейн заявлял, что он противостоит неопределенности и случайности квантового поведения. Он претворил веру своей жизни в единый организм, который действовал без трещин, слез и разрывов.

До самой своей смерти в 1955 году Эйнштейн пытался доказать, что реальностей не две, а одна; но такая задача была столь далека от научного мейнстрима, что после 1930-х годов эти мысли считались случайными. В определенные моменты даже величайшие почитатели лишь сокрушенно покачали бы головами: столь великий ум тратит десятилетия на погоню за блуждающими огнями. Тем не менее однажды Эйнштейну дали понять, как избежать ловушки, создаваемой теорией относительности и квантовой механикой. Обходной путь показал, правда, не ученый, а поэт.

14 июля 1930 года репортеры со всего мира осадили виллу Эйнштейна в Капуте, небольшой деревеньке невдалеке от Берлина, куда успешные люди уезжали от городского шума и гама. Случилось приехать туда и индийскому великому поэту Рабиндранату Тагору, тогда переживавшему пик своей славы. Родившийся в 1861 году, почти за двадцать лет до Эйнштейна, в знаменитой бенгальской семье, Тагор ворвался в сознание западных читателей, получив Нобелевскую премию по литературе в 1913 году. Но он был и философом, и музыкантом, в котором Запад видел своего рода символ глубоких индийских духовных традиций. Цель визита Тагора к «величайшему ученому мира», каким считался Эйнштейн, была в том, чтобы обсудить с ним природу реальности.

В то время как наука серьезно сомневалась в религиозном взгляде на мир, у читателей Тагора создавалось впечатление, что поэт наслаждается жутковатой и очень личной связью с духовным миром. Такое впечатление сохраняется и теперь, если прочесть хотя бы отрывки из его стихотворений.

 
Острая боль внутри –
Душа ли моя рвется наружу,
Или душа мира рвется внутрь меня?
 
 
Мой разум вздрагивает вместе с мерцающими листьями,
Мое сердце поет с прикосновениями солнца,
Моей жизни радостно плыть со всем сущим
По синеве космоса и темноте времени.
 

В тот июльский день, когда разговор был записан для потомков, Эйнштейн более чем вежливо интересовался мировоззрением Тагора: ученый признал привлекательность альтернативной реальности.

Первый вопрос задал Эйнштейн: «Верите ли вы, что божественное изолировано от земного?»

Тагор ответил на цветистом индийском английском, и ответ его был неожиданным: «Нет, не изолировано. Вселенная постигается бесконечной личностью человека. Нет ничего такого, что не может быть отнесено к человеческой личности. Правда Вселенной – правда людей».

Затем Тагор продолжил, сочетая науку и мистику в метафорах: «Материя состоит из протонов, электронов, промежутков между ними, но может казаться сплошной, без звеньев в пространствах, связующих отдельные электроны и протоны. Вселенная связана с нами, с личностями, так же. Это человеческая Вселенная».

Простым словосочетанием – «человеческая Вселенная» – Тагор бросил окончательный вызов материализму. Но тем же он и подорвал заветную веру во Вселенную божественную. Материализм представлял бы людей чем-то случайно возникшим на случайной планете в одной из миллиардов галактик. Религия в ее самом буквальном понимании полагает, что Божий ум простирается бесконечно дальше, чем пределы человеческого разума. Тагор не разделял ни одного из этих взглядов, и Эйнштейн сразу же, как показывает нам стенограмма, увлекся.

Эйнштейн. Существуют две разные концепции природы Вселенной: мир как явление, зависящее от человечества, и мир как реальность, независимая от человеческого фактора.

Тагор от этого «или – или» отказывается.

Тагор. Когда наша Вселенная находится в гармонии с человеком вечным, мы видим в этом истину, чувствуем в этом красоту.

Эйнштейн. Это чисто человеческая концепция Вселенной.

Тагор. А другой и быть не может.

Тагор не создавал ни поэтическую фантазию, ни даже мистическую догму. Возможно, он был одет в ниспадающие одежды и носил длинную белую бородку мудреца, но в течение семидесяти лет он пытался смириться с научным взглядом на реальность и чувствовал, что может противостоять ему чем-то более глубоким и более близким к истине.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6

Поделиться ссылкой на выделенное