banner banner banner
Оптика и теория цвета
Оптика и теория цвета
Оценить:
Рейтинг: 0

Полная версия:

Оптика и теория цвета

скачать книгу бесплатно

Оптика и теория цвета
Татьяна Данина

Учение Джуал Кхула – Эзотерическое Естествознание #7
Продолжение Учения тибетского Вознесенного Мастера, Джуал Кхула, представителя Трансгималайской Эзотерической Школы. В этой книге он раскрывает тайну цвета и вместе с вами исследует загадки оптических явлений. Цвет – это уникальная характеристика, причем, не только вещества, но и каждой элементарной частицы. В этом мы предлагаем вам убедиться на страницах этой книги, седьмой из серии «Учение Джуал Кхула – Эзотерическое Естествознание». Мы предложим вашему вниманию совершенно новую теорию цвета. На ее основе вы убедитесь, что в радуге не 7 цветов, а шесть. Вы узнаете, что в формировании спектра главную роль играют гравитация и инерция. Мы разберем истинную суть черного, белого и серого цветов, а также, блеска и прозрачности тел. Почему небо синее и его цвет связан с цветом венозной крови? Каков механизм действия линз, причина аккомодации. Близорукость и дальнозоркость. И еще многие другие вопросы этой интереснейшей области физики. Желаем вам увлекательного прочтения!

Татьяна Данина

Учение Джуал Кхула – Оптика и теория цвета

Книга 7

СЕРИЯ

ЭЗОТЕРИЧЕСКОЕ ЕСТЕСТВОЗНАНИЕ

* * * * *

Третья часть Учения гималайского адепта, Джуал Кхула,

синтез науки и эзотерики

Контактная информация http (http://newezo.ru/):// (http://newezo.ru/)newezo (http://newezo.ru/).ru (http://newezo.ru/); danina.t@yandex.ru

01. Свет и другие электромагнитные волны – это потоки элементарных частиц

Давайте рассмотрим основные явления оптики и постараемся доказать мысль, что оптика связана с термодинамикой и всеми остальными разделами физики.

Основное отличие видимых (оптических) фотонов от остальных элементарных частиц заключается в том, что мы их можем «увидеть». Сам процесс зрительного восприятия мы попробуем разобрать в части, посвященной биологии. А здесь скажу лишь, что неким образом частицы Буддхического Плана, составляющие сущность нашего Человеческого «Я», обрабатывают совокупности видимых (оптических) фотонов, поступающих в клетки головного мозга через глаза и зрительные нервы. Но, так или иначе, мы способны воспринимать видимые (оптические) фотоны, испускаемые или отражаемые окружающими химическими элементами.

Геометрическая оптика посвящена детальному изучению закономерностей распространения видимых (оптических) фотонов (элементарных частиц оптического диапазона) в оптически прозрачных средах, и на границах раздела сред (тел) различной плотности, одна из которых обязательно является оптически прозрачной. Предмет изучения оптики – «свет». В узком смысле «свет» – это только свободные видимые (оптические) фотоны, а в более общем – это любые типы свободных элементарных частиц.

Современная оптика изучает особенности распространения в оптически прозрачных средах элементарных частиц различного качества (электромагнитных волн с различной длиной волны).

Есть ли разница между понятиями «свет» и «электромагнитная волна»? В принципе, это одно и то же. Световой луч – это поток видимых (оптических) фотонов, движущихся в одинаковом направлении. Понятие «электромагнитная волна» употребляется в более широком смысле. Это поток фотонов любого качества – т. е. любых элементарных частиц, представленных на шкале частот электромагнитных волн. Хотя, в действительности, понятию «электромагнитная волна» можно придать еще более широкое значение и трактовать его как поток элементарных частиц любого качества.

Физики не употребляют термин «электромагнитная волна» по отношению движущимся электронам или протонам, или каким-либо другим элементарным частицам, не относящимся к фотонам. А следовало бы. Естественно, что к элементарным частицам не Физического, а других Планов, пока никто не применял понятие «электромагнитная волна» по той простой причине, что элементарные частицы других Планов еще не классифицированы с позиции физики. Это значит, что с ними не проводились опыты по изучению их длины волны. А все из-за того, что элементарные частицы других Планов Астрального, Ментального, Буддхического и других не испускаются элементами живых организмов в таком количестве, как это происходит с элементарными частицами Физического Плана, которые в огромном количестве накапливаются на поверхности химических элементов (поступая с Солнца), а затем в таком же огромном количестве испускаются в процессе горения химических элементов. Сейчас проводится достаточное количество опытов по изучению излучений живых организмов. Однако количество излучаемых частиц других Планов очень мало по сравнению с количеством частиц Физического Плана – например, видимых (оптических) фотонов – излучаемых любым светящимся химическим элементом. По этой причине не могли быть проведены опыты по изучению длины волны излучений живых существ. Отсюда – невозможность классифицировать данные типы элементарных частиц, даже если они и регистрируются приборами. Скорее всего, их относят к общему тепловому излучению тела. Что касается «свободно летающих» в воздухе элементарных частиц не Физического Плана – то их тоже можно зарегистрировать, как любые частицы Физического Плана. Но это сложно. Во-первых, потому, что их число, находящееся в какой-то момент в каком-то объеме воздуха очень мало. А во-вторых, отсутствуют методы классификации частиц в процессе их регистрации, если число регистрируемых частиц очень мало.

02. Для планет солнце – основной источник элементарных частиц физического плана

Для химических элементов Земли основным источником радио, инфракрасных, видимых и ультрафиолетовых фотонов является Солнце. Когда какая-либо область на поверхности планеты повернута к Солнцу (освещена), химические элементы этой области бомбардируются всеми вышеперечисленными частицами. Элементарные частицы более нижних уровней Физического Плана, начиная с рентгеновских фотонов, также испускаются Солнцем, но в гораздо меньшем количестве. Поглощение элементами космической среды и верхних слоев атмосферы и вовсе сводит на нет число частиц нижних уровней Физического Плана, достигающих твердой или жидкой поверхности Земли.

03. Основные оптические явления

Оптика занимается изучением оптических явлений – т. е. законов поведения электромагнитных волн видимого диапазона (и близких к нему других диапазонов), распространяющихся во всевозможных средах и телах, состоящих из химических элементов. Давайте перечислим все существующие оптические явления.

1) Испускание «света»;

2) Поглощение света;

3) Отражение света;

4) Пропускание света;

5) Преломление света;

6) Рассеяние света.

Соответственно, раз мы считаем, что «свет» – это поток элементарных частиц определенного качества, то все перечисленные оптические явления мы будем рассматривать не только по отношению к видимым фотонам, но и по отношению ко всем остальным типам элементарных частиц.

Явления оптики очень трудно описывать отдельно друг друга, так как они взаимно переплетаются и одно сопровождает другое. Процессы поглощения и отражения могут протекать параллельно. Отражение всегда сопровождается испусканием и поглощением. В основе рассеяния лежат преломление и отражение. А причина преломления и поглощения одна и та же. И, наконец, пропускание всегда начинается с испускания или отражения, в ходе его наблюдается, пускай и ничтожное, рассеяние, и заканчивается пропускание, в конце концов, поглощением. Вот такая связь между явлениями оптики. А если быть точной – между особенностями поведения элементарных частиц в средах, состоящих из химических элементов.

04. Испускание света. Почему при нагревании тела вначале краснеют

А теперь мы займемся рассмотрением явления испускания света. Вначале мы разберем его в отношении оптических фотонов. А затем применим выявленные закономерности к любым типам элементарных частиц.

Если вы когда-нибудь наблюдали за процессом нагрева каких-либо тел, то должны были заметить, что тела при этом как бы переходят от одного состояния к другому и выражается это в изменении особенностей их окраски. До определенной температуры вещество тела либо окрашено в какой-либо цвет, либо прозрачно, либо блестит. Затем, при усилении или продолжении нагрева, тело приобретает красную окраску. Для разных веществ температура, при которой появляется красная окраска, различна. Проще всего наблюдать этот процесс на примере горения твердых тел, у которых на единицу объема приходится больше всего химических элементов, что позволяет создавать высокую яркость испускаемого или отражаемого света.

Испускание света происходит в процессе нагрева химических элементов вещества тела. При этом в процессе испускания, в той или иной мере осуществляется распад (испускание) периферических слоев химического элемента. Естественно, что первыми будут отделяться накопленные (поглощенные) элементами на периферии частицы солнечного происхождения. А отделяющиеся от элемента оптические фотоны как раз и позволяют нам увидеть химический элемент в составе нагреваемого тела. Но к испускаемым фотонам прибавляются также отражаемые фотоны, падающие на элемент (если нагрев осуществляется посредством бомбардировки падающими частицами).

В процессе нагрева распад тем больше – т. е. затрагивает тем более глубокие слои химического элемента – чем больше температура элемента, т. е. чем больше степень трансформации образующих его частиц и чем большее число частиц в составе элемента вовлечено в процесс трансформации. Распад (испускание) периферических слоев химического элемента в результате его нагрева – это горение химического элемента. Радиоактивные элементы также относятся к числу нагретых химических элементов. И радиоактивное излучение следует рассматривать как элементарные частицы, испускаемые нагретыми элементами.

Любой химический элемент в составе планеты (за исключением инертных газов) накапливает на своей поверхности солнечные элементарные частицы, которые движутся из верхних слоев атмосферы (из ионосферы) в направлении центра планеты. Это значит, что любой химический элемент при нормальной температуре уже имеет на своей поверхности определенное количество солнечных элементарных частиц, в том числе, и видимых фотонов. Количество частиц, которые накапливает элемент, обусловлено особенностями проявления вовне его суммарного Поля Притяжения и суммарного Поля Отталкивания, а также их величинами.

Нагрев элемента до температуры выше нормальной означает, что на поверхности элемента дополнительно накапливаются солнечные частицы с Полями Отталкивания. Среди солнечного излучения, достигающего планет, вообще преобладают частицы с Полями Отталкивания. Частицы с Полями Отталкивания увеличивают суммарное Поле Отталкивания химического элемента, на поверхность которого они осели. Это Поле Отталкивания экранирует суммарное Поле Притяжения элемента. Из-за этого уменьшается Сила Притяжения, вызываемая этим элементом в элементарных частицах, которые на него оседают. Т. е. все новые порции частиц с Полями Отталкивания, которые падают на элемент (т. е. нагревают его) перестают притягиваться этим элементом и начинают отражаться. Проще всего заставить отразиться частицу, которая и вне процесса трансформации обладает Полем Отталкивания, так как эфир, испускаемый частицей, вклинивается между частицами элемента и самой испускающей его частицей, и заставляет ее отдаляться от элемента. Среди всех частиц Физического Плана таким свойством обладают все частицы красного цвета (творящие больше всего эфира). При этом каждый диапазон на шкале частот включает в себя частицы красного цвета. Вот вам и объяснение того, почему при нагреве любого вещества первыми испускаются красные видимые фотоны. Следует уточнить – первыми испускаются любые красные элементарные частицы, падающие на элемент и нагревающие его, любого диапазона, а не только видимые красные фотоны.

Такое оптическое свойство тела, как его окрашенность раскрывается именно в процессе испускания видимых фотонов элементами данного тела. Однако проявление телом своей окрашенности имеет определенные границы. Так, например, мы не увидим окраску тела, как и не увидим тело вообще, если элементы этого тела не будут бомбардироваться какими-либо элементарными частицами – любого диапазона Физического Плана. В то же время, для того, чтобы была видна окраска тела, необходимо, чтобы на поверхности элементов тела не было накоплено слишком много «посторонних» элементарных частиц – т. е. чтобы температура элементов тела была близка к нормальной. Если температура элементов тела будет слишком большой, то мы увидим вначале красную окраску, которая затем перейдет в оранжевую, затем в желтую, потом белую. В то время как для того, чтобы проявлялась собственная окраска тела, нужно чтобы в процессе испускания света участвовали собственные периферические слои элементов, а не накопленные «посторонние» частицы.

Итак, тело, на которое не падают элементарные частицы, не излучает свет вообще – кажется черным. А слишком нагретое тело имеет красную окраску (в начальные этапы нагрева). Только температура, близкая к нормальной, способствует проявлению истинного цвета тела.

Способы нагрева химических элементов могут быть различными. Это во-первых. А во-вторых, элементы различного качества по разному реагируют на различные способы нагрева. Перечислим способы нагрева химических элементов:

1) Нагрев химического элемента за счет поглощения (накопления) им элементарных частиц с Полями Отталкивания. Для нас, обитающих на поверхности планеты, это в первую очередь относится к накоплению частиц солнечного происхождения.


Вы ознакомились с фрагментом книги.
Для бесплатного чтения открыта только часть текста.
Приобретайте полный текст книги у нашего партнера:
Полная версия книги
(всего 1 форматов)