М. Бабаев.

Гидравлика

(страница 1 из 5)

скачать книгу бесплатно

1. Методы применения законов гидравлики

1. Аналитический. Цель применения этого метода – устанавливать зависимость между кинематическими и динамическими характеристиками жидкости. С этой целью пользуются уравнениями механики; в итоге получают уравнения движения и равновесия жидкости.

Для упрощенного применения уравнений механики пользуются модельными жидкостями: например, сплошная жидкость.

По определению, ни один параметр этого континуума (сплошной жидкости) не может быть прерывным, в том числе его производное, причем в каждой точке, если нет особых условий.

Такая гипотеза позволяет установить картину механического движения и равновесия жидкости в каждой точке континуума пространства. Еще одним приемом, применяемом для облегчения решения теоретических задач, является решение задачи для одномерного случая со следующим обобщением для трехмерного. Дело в том, что для таких случаев не так трудно установить среднее значение исследуемого параметра. После этого можно получить другие уравнения гидравлики, наиболее часто применяемые.

Однако этот метод, как и теоретическая гидромеханика, суть которой составляет строго математический подход, не всегда приводит к необходимому теоретическому механизму решения проблемы, хотя и неплохо раскрывает ее общую природу проблемы.

2. Экспериментальный. Основным приемом, по этому методу, является использование моделей, согласно теории подобий: при этом полученные данные применяются в практических условиях и становится возможным уточнение аналитических результатов.

Наилучшим вариантом является сочетание двух вышеназванных методов.

Современную гидравлику трудно себе представить без применения современных средств проектирования: это высокоскоростные локальные сети, автоматизированное рабочее место конструктора и прочее.

Поэтому современную гидравлику нередко называют вычислительной гидравликой.

Свойства жидкости

Поскольку газ – следующее агрегатное состояние вещества, то у этих форм вещества существует свойство, общее для обоих агрегатных состояний. Это свойство текучести.

Исходя из свойств текучести, рассмотрев жидкое и газообразное агрегатное состояние вещества, увидим, что жидкость – то состояние вещества, в котором его уже невозможно сжимать (или можно сжать бесконечно мало). Газ – такое состояние того же вещества, в котором его можно сжать, то есть газ можно назвать сжимаемой жидкостью, точно так же, как и жидкость – несжимаемым газом.

Другими словами, особых принципиальных различий, кроме сжимаемости, между газом и жидкостью не наблюдается.

Несжимаемую жидкость, равновесие и движение которой изучает гидравлика, называют также капельной жидкостью.

2. Основные свойства жидкости

Плотность жидкости.

Если рассмотреть произвольный объем жидкости W, то он имеет массу M.

Если жидкость однородна, то есть если во всех направлениях ее свойства одинаковы, то плотность будет равна


где M – масса жидкости.

Если требуется узнать r в каждой точке А объема W, то


где D – элементарность рассматриваемых характеристик в точке А.

Сжимаемость.

Характеризуется коэффициентом объемного сжатия.


Из формулы видно, что речь идет о способности жидкостей уменьшать объем при единичном изменении давления: из-за уменьшения присутствует знак минус.

Температурное расширение.


Суть явления втом, что слой с меньшей скоростью «тормозит» соседний.

В итоге появляется особое состояние жидкости, из-за межмолекулярных связей у соседних слоев. Такое состояние называют вязкостью.


Отношение динамической вязкости к плотности жидкости называется кинематической вязкостью.

Поверхностное натяжение: из-за этого свойства жидкость стремится занимать наименьший объем, например, капли в шарообразных формах.

В заключение приведем краткий список свойств жидкостей, которые рассмотрены выше.

1. Текучесть.

2. Сжимаемость.

3. Плотность.

4. Объемное сжатие.

5. Вязкость.

6. Температурное расширение.

7. Сопротивление растяжению.

8. Свойство растворять газы.

9. Поверхностное натяжение.

3. Силы, действующие в жидкости

Жидкости делятся на покоящиеся и движущиеся.

Здесь же рассмотрим силы, которые действуют на жидкость и вне ее в общем случае.

Сами эти силы можно разделить на две группы.

1. Силы массовые. По-другому эти силы называют силами, распределенными по массе: на каждую частицу с массой ?M = ?W действует сила ?F, в зависимости от ее массы.

Пусть объем ?W содержит в себе точку А. Тогда в точке А:


где – плотность силы в элементарном объеме.

Плотность массовой силы – векторная величина, отнесена к единичному объему ?W; ее можно проецировать по осям координат и получить: Fx, Fy, Fz. То есть плотность массовой силы ведет себя, как массовая сила.

Примерами этих сил можно назвать силы тяжести, инерции (кориолисова и переносная силы инерции), электромагнитные силы.

Однако в гидравлике, кроме особых случаев, электромагнитные силы не рассматривают.

2. Поверхностные силы. Таковыми называют силы, которые действуют на элементарную поверхность ?w, которая может находиться как на поверхности, так и внутри жидкости; на поверхности, произвольно проведенной внутри жидкости.

Таковыми считают силы: силы давления которые составляют нормаль к поверхности; силы трения которые являются касательными к поверхности.

Если по аналогии (1) определить плотность этих сил, то:

нормальное напряжение в точке А:


касательное напряжение в точке А:


И массовые, и поверхностные силы могут быть внешними, которые действуют извне и приложены к какой-то частице или каждому элементу жидкости; внутренними, которые являются парными и их сумма равна нулю.

4. Гидростатическое давление и его свойства

Общие дифференциальные уравнения равновесия жидкости – уравнения Л. Эйлера для гидростатики.

Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость S = w.

Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение ?w, и есть гидростатическое давление.

Если оценить среднее значение этой силы,


Рассмотрев точку А как предельный случай w, определяем:


Если перейти к пределу, то ?w переходит в точку А.

Поэтому ?px? ?pn. В конечном результате px = pn, точно так же можно получить py = pn, pz = pn.

Следовательно,

py = pn, pz = pn.

Мы доказали, что во всех трех направлениях (их мы выбрали произвольно) скалярное значение сил одно и то же, то есть не зависит от ориентации сечения ?w.

Вот это скалярное значение приложенных сил и есть гидростатическое давление, о котором говорили выше: именно это значение, сумма всех составляющих, передается через ?w.

Другое дело, что в сумме (px + py + pz) какая-то составляющая окажется равной нулю.

Как мы в дальнейшем убедимся, в определенных условиях гидростатическое давление все же может быть неодинаково в различных точках одной и той же покоящейся жидкости, т. е.

p = f(x, y, z).

Свойства гидростатического давления.

1. Гидростатическое давление всегда направлено по нормали к поверхности и его величина не зависит от ориентации поверхности.

2. Внутри покоящейся жидкости в любой точке гидростатическое давление направлено по внутренней нормали к площадке, проходящей через эту точку.

Причем px = py = pz = pn.

3. Для любых двух точек одного и того же объема однородной несжимаемой жидкости (? = const)

?1 + ?П1 = ?2 + ?П1

где ? – плотность жидкости;

П1, П2 – значение поле массовых сил в этих точках.

Поверхность, для любых двух точек которой давление одно и то же, называется поверхностью равного давления.

5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести

Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.

Для единицы массы покоящейся жидкости


Для любых двух точек одного и того же объема, то


Полученные уравнения описывают распределение давления в жидкости, которая находится в равновесном состоянии. Из них уравнение (2) является основным уравнением гидростатики.

Для водоемов больших объемов или поверхности требуется уточнения: сонаправлен ли радиусу Земли в данной точке; насколько горизонтальна рассматриваемая поверхность.

Из (2) следует

p = p0 + ?g(z – z0), (4)

где z1 = z; p1 = p; z2 = z0; p2 = p0.

p = p0 + ?gh, (5)

где ?gh – весовое давление, которое соответствует единичной высоте и единичной площади.

Давление р называют абсолютным давлением pабс.

Если р > pабс, то p – pатм = p0 + ?gh – pатм – его называют избыточным давлением:

pизч = p < p0, (6)

если p < pатм, то говорят о разности в жидкости

pвак = pатм – p, (7)

называют вакуумметрическим давлением.

6. Законы Паскаля. Приборы измерения давления

Что произойдет в других точках жидкости, если приложим некоторое усилие ?p? Если выбрать две точки, и приложить к одной из них усилие ?p1, то по основному уравнению гидростатики, во второй точке давление изменится на ?p2.


откуда легко заключить, что при равности прочих слагаемых должно быть

?p1= ?p2. (2)

Мы получили выражение закона Паскаля, который гласит: изменение давления в любой точке жидкости в равновесном состоянии передается во все остальные точки без изменений.

До сих пор мы исходили из предположения, что ? = const. Если иметь сообщающийся сосуд, который заполнен двумя жидкостями с ?1? ?2, причем внешнее давление p0= p1= pатм, то согласно (1):

?1gh = ?2gh, (3)

откуда


где h1, h2 – высота от раздела поверхности до соответствующих свободных поверхностей.

Давление – физическая величина, которая характеризует силы, направленные по нормали к поверхности одного предмета со стороны другого.

Если силы распределены нормально и равномерно, то давление


где – F суммарная приложенная сила;

S – поверхность, к которой приложена сила.

Если силы распределены неравномерно, то говорят о среднем значении давления или считают его в отдельно взятой точке: например, в вязкой жидкости.

Приборы для измерения давления

Одним из приборов, которым измеряют давление, является манометр.

Недостатком манометров является то, что у них нее большой диапазон измерений: 1—10 кПа.

По этой причине в трубах используют жидкости, которые «уменьшают» высоту, например, ртуть.

Следующим прибором для измерения давления является пьезометр.

7. Анализ основного уравнения гидростатики

Высоту напора принято называть пьезометрической высотой, или напором.

Согласно основному уравнению гидростатики,

p1+ ?ghA= p2+ ?ghH,

где ? – плотность жидкости;

g – ускорение свободного падения.

p2, как правило, задается p2= pатм, поэтому, зная hА и hH, нетрудно определить искомую величину.

2. p1= p2= pатм. Совершенно очевидно, что из ? = const, g = const следует, что hА= hH. Этот факт называют также законом сообщающихся сосудов.

3. p1< p2= pатм.

Между поверхностью жидкости в трубе и ее закрытым концом образуется вакуум. Такие приборы называют вакуумметры; их используют для измерения давлений, которые меньше атмосферного.

Высота, которая и является характеристикой изменения вакуума:


Вакуум измеряется в тех же единицах, что и давление.

Пьезометрический напор

Вернемся к основному гидростатическому уравнению. Здесь z – координата рассматриваемой точки, которая отсчитывается от плоскости XOY. В гидравлике плоскость XOY называется плоскостью сравнения.

Отсчитанную от этой плоскости координату z называют пооразному: геометрической высотой; высотой положения; геометрическим напором точки z.

В том же основном уравнении гидростатики величии на p/?gh – также геометрическая высота, на которую поднимается жидкость в результате воздействия давления р. p/?gh так же, как и геометрическая высота, измеряется в метрах. В случае, если через другой конец трубы на жидкость действует атмосферное давление то жидкость в трубе поднимается на высоту pизб/?gh, которую называют вакуумметрической высотой.

Высоту, соответствующую давлению pвак, называют вакуумметрической.

В основном уравнении гидростатики сумма z + p/?gh – гидростатический напор Н, различают также пьезометрический напор Hn , который соответствует атмосферному давлению pатм/?gh:

Hn < H

8. Гидравлический пресс

Гидравлический пресс служит для совершения на коротком пути большей работы. Рассмотрим работу гидравлического пресса.

Для этого, чтобы совершалась работа над телом, надо воздействовать на поршень с некоторым давлением Р. Это давление, как и Р2, создается следующим образом.

Когда поднимается поршень насоса с площадью нижней поверхности S2, то он закрывает первый клапан и открывает второй. После заполнения цилиндра водой второй клапан закрывается, открывается первый.

В результате вода через трубу заполняет цилиндр и давит на поршень с помощью нижнего сечения S1 с давлением Р2.

Это давление, как давление Р1, сжимает тело.

Совершенно очевидно, что Р1– это то же самое давление, что и Р2, разница только в том, что они воздействуют на разные по величине площади S2 и S1.

Другими словами, давления:

P1= pS1 и P2= pS2. (1)

Выразив p = P2/S2 и подставив в первую формулу, получим:


Из полученной формулы следует важный вывод: на поршень с большей площадью S1 со стороны поршня с меньшей площадью S2 передается давление во столько раз большее, во сколько раз S1> S2.

Однако на практике из-за сил трения до 15 % этой передаваемой энергии теряется: тратится на преодоление сопротивления сил трения.

И все же у гидравлических прессов коэффициент полезного действия ?= 85 % – достаточно высокий показатель.

В гидравлике формула (2) перепишется в следующем виде:


где P1 обозначено как R;

S1– ?1;

S2– ?2.

Гидравлический аккумулятор

Гидравлический аккумулятор служит для поддержания давления в подключенной к нему системе постоянным.

Достижение постоянства давления происходит следующим образом: сверху на поршень, на его площадь ?, действует груз Р.

Труба служит для передачи этого давления по всей системе.

Если в системе (механизме, установке) жидкости в избытке, то избыток по трубе поступает в цилиндр, поршень поднимается.

При недостатке жидкости поршень опускается, и создаваемое при этом давление р, по закону Паскаля, передается на все части системы.

9. Определение силы давления покоящейся жидкости на плоские поверхности. Центр давления

Для того, чтобы определить силу давления, будем рассматривать жидкость, которая находится в покое относительно Земли. Если выбрать в жидкости произвольную горизонтальную площадь ?, то, при условии, что на свободную поверхность действует ратм= р0, на ? оказывается избыточное давление:

Ризб = ?gh?. (1)

Поскольку в (1) ?gh? есть не что иное, как mg, так как h? и ?V = m, избыточное давление равно весу жидкости, заключенной в объеме h?. Линия действия этой силы проходит по центру площади ? и направлена по нормали к горизонтальной поверхности.

Формула (1) не содержит ни одной величины, которая характеризовала бы форму сосуда. Следовательно, Ризб не зависит от формы сосуда. Поэтому из формулы (1) следует чрезвычайно важный вывод, так называемый гидравлический парадокс – при разных формах сосудов, если на свободную поверхность оказывается одно и тоже р0, то при равенстве плотностей ?, площадей ? и высот h давление, оказываемое на горизонтальное дно, одно и то же.

При наклонности плоскости дна имеет место смачивание поверхности с площадью ?. Поэтому, в отличие от предыдущего случая, когда дно лежало в горизонтальной плоскости, нельзя сказать, что давление постоянно.

Чтобы определить его, разобьем площадь ? на элементарные площади d?, на любую из которых действует давление

По определению силы давления,


причем dP направлено по нормали к площадке ?.

Теперь, если определить суммарную силу которая воздействует на площадь ?, то ее величина:


Определив второе слагаемое в (3) найдем Рабс.

Pабс = ?(p0 + hц. е). (4)

Получили искомые выражения для определения давлений, действующих на горизонтальную и наклонную

плоскости: Ризб и Рабс.

Рассмотрим еще одну точку С, которая принадлежит площади ?, точнее, точку центра тяжести смоченной площади ?. В этой точке действует сила P0= ?0?.

Сила действует в любой другой точке, которая не совпадает с точкой С.

10. Определение силы давления в расчетах гидротехнических сооружений

При расчетах в гидротехнике интерес представляет сила избыточного давления Р, при:

р0 = ратм,

где р0 – давление, приложенное к центру тяжести.

Говоря о силе, будем иметь в виду силу, приложенную в центре давления, хотя будем подразумевать, что это – сила избыточного давления.

Для определения Рабс воспользуемся теоремой моментов, из теоретической механики: момент равнодействующей относительно произвольной оси равен сумме моментов составляющих сил относительно той же оси.

Теперь, согласно этой теореме о равнодействующем моменте:


Поскольку при р0 = ратм, P = ?ghц. е.?, поэтому dP = ?ghd? = ?gsin?ld?, следовательно (здесь и далее для удобства не будем различать ризб и рабс), с учетом P и dP из (2), а также после преобразований следует:


Если теперь перенесем ось момента инерции, то есть линию уреза жидкости (ось OY) в центр тяжести ?, то есть в точку С, то относительно этой оси момент инерции центра давления точки D будет J0.

Поэтому выражение для центра давления (точка D) без переноса оси момента инерции от той же линии уреза, совпадающие с осью OY, будет иметь вид:

Iy = I0 + ?l2ц.т.

Окончательная формула для определения места расположения центра давления от оси уреза жидкости:

lц. д. = lц. г.+ I0/S.

где S = ?lц.д. – статистический момент.

Окончательная формула для lц.д. позволяет определить центр давления при расчетах гидротехнических сооружений: для этого разбивают участок на составные участки, находят для каждого участка lц.д. относительно линии пересечения этого участка (можно пользоваться продолжением этой линии) со свободной поверхностью.

Центры давления каждого из участков находятся ниже центра тяжести смоченной площади по наклонной стенке, точнее по оси симметрии, на расстоянии I0/?lц.u.

11. Общая методика определения сил на криволинейные поверхности

1. В общем случае, это давление:

Pz = ?gWg,

где Wg – обьем рассматриваемой призмы.

В частном случае, направления линий действия силы на криволинейную поверхность тела, давления зависят от направляющих косинусов следующего вида:


Сила давления на цилиндрическую поверхность с горизонтальной образующей полностью определена. В рассматриваемом случае ось OY направлена параллельно горизонтальной образующей.

2. Теперь рассмотрим цилиндрическую поверхность с вертикальной образующей и направим ось OZ параллельно этой образующей, что значит ?z = 0.

Поэтому по аналогии, как и в предыдущем случае,

где h'ц.т. – глубина центра тяжести проекции под пьезометрическую плоскость;

h' ц.т. – то же самое, только для ?y.

Аналогично, направление определяется направляющими косинусами



Если рассмотреть цилиндрическую поверхность, точнее, объемный сектор, с радиусом ? и высотой h, с вертикальной образующей, то

?x = hy,

h'ц.т. = 0,5h.

3. Осталось обобщить полученные формулы для прикладного применения произвольной криволинейной поверхности:

12. Закон Архимеда. Условия плавучести погруженных тел

Следует выяснить условия равновесия погруженного в жидкость тела и следствия, вытекающие из этих условий.

Сила, действующая на погруженное тело – равнодействующая вертикальных составляющих Pz1, Pz2,т. е.:

Pz1 = Pz1 – Pz2 = ?gWТ. (1)

где Pz1, Pz2 – силы направленные вниз и вверх.

Это выражение характеризует силу, которую принято называть архимедовой силой.

Архимедовой силой является сила, равная весу погруженного тела (или его части): эта сила приложена в центр тяжести, направлена вверх и количественно равна весу жидкости, вытесненной погруженным телом или его частью. Мы сформулировали закон Архимеда.

Теперь разберемся с основными условиями плавучести тела.

1. Объем жидкости, вытесненной телом, называется объемным водоизмещением. Центр тяжести объемного водоизмещения совпадает с центром давления: именно в центре давления приложена равнодействующая сил.

2. Если тело погружено полностью, то объем тела W совпадает с WТ, если нет, то W < WТ, то есть Pz = ?gW.

3. Тело будет плавать только в том случае, если вес тела

GТ = Pz = ?gW, (2)

т. е. равен архимедовой силе.

4. Плавание:

1) подводное, то есть тело погружено полностью, если P = Gт, что означает (при однородности тела):

?gW = ?тgWТ, откуда


где ?,?Т – плотность жидкости и тела соответственно;

W– объемное водоизмещение;

WТ – объем самого погруженного тела;

2) надводное, когда тело погружено частично; при этом глубину погружения низшей точки смоченной поверхности тела называют осадкой плавающего тела.

Ватерлинией называют линию пересечения погруженного тела по периметру со свободной поверхностью жидкости.

Площадью ватерлинии называется площадь погруженной части тела, ограниченной ватерлинией.

Линию, которая проходит через центры тяжести тела и давления, называют осью плавания, которая при равновесии тела вертикальна.

Здесь представлен ознакомительный фрагмент книги.
Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Купить и скачать книгу в rtf, mobi, fb2, epub, txt (всего 14 форматов)



скачать книгу бесплатно

страницы: 1 2 3 4 5

Поделиться ссылкой на выделенное