И. Дроздова.

Удивительная биология

(страница 1 из 23)

скачать книгу бесплатно

 -------
| bookZ.ru collection
|-------
|  И. В. Дроздова
|
|  Удивительная биология
 -------

   В повседневных делах и заботах мы обычно не думаем о мириадах невидимых существ, которые сопутствуют нам на каждом шагу и буквально заполняют окружающий мир. И когда говорят о микробах, в нашем сознании прежде всего всплывает мысль о болезнях. Вероятно, где-то внутри нас живут воспоминания о трагических событиях прошлых столетий, когда чума и холера уносили тысячи и миллионы человеческих жизней, а оставшиеся в живых пребывали в паническом страхе перед неведомыми грозными врагами. После того как в XVII в. Антони ван Левенгук открыл мир невидимых существ, ученые вот уже 300 лет продолжают охотиться за микробами. Долгое время в микробах видели источник всех зол, но постепенно среди них были найдены не только враги, но и активные помощники человека. Теперь можно смело утверждать, что польза, приносимая микроорганизмами, превосходит причиняемый ими вред.
   «Ломоть хорошо испеченного хлеба составляет одно из величайших изобретений человеческого ума», – сказал как-то К. А. Тимирязев. Не нужно забывать, что задолго до того, как виновники основных микробиологических процессов были открыты и изучены под микроскопом, они надежно служили людям. Веками подымалось в квашне тесто, молоко, прокисая, превращалось в простоквашу, в чанах бродило пиво, а из виноградного сока получалось вино, веселившее души наших предков.


   Всем зеленым растениям необходима минеральная пища. Высасывая из почвы различные соли, они постепенно лишают ее плодородия. И если, например, из года в год на одном и том же поле высевать только рожь или пшеницу и не вносить никаких удобрений, то в конце концов собранного урожая и на семена не хватит.
   Однако среди зеленых потребителей выделяется группа растений, которые не только берут из почвы нужные им вещества, но и обогащают ее одним из самых важных для всего живого элементом – азотом. Химическая промышленность всех стран мира, вместе взятых, производящая азотистые удобрения, не в силах тягаться с естественными подземными фабриками бобовых.
   К этому надо добавить, что посев бобовых культур – самый экономичный способ вернуть почве плодородие. Ведь азот, накопленный этими культурами, по существу дармовой. Вот почему во всех странах мира широко практикуют севообороты, при которых посевы основной культуры (скажем, каких-нибудь зерновых) чередуют с посевами бобовых. О свойстве бобовых повышать плодородие почвы знали со времен классической древности. О нем писали Теофраст, Катон, Варрон, а Вергилий и Плиний даже указывали, что бобы, люпин и вика удобряют почву не хуже навоза, и давали практические рекомендации по их использованию.
Однако все эти ученые и не подозревали, что «утучнению земли» способствуют не сами растения, а бактерии, поселяющиеся на их корнях. Об этом стало известно только в конце XIX в.
   В почве обитает огромное количество разнообразных микробов. Каждый из них осуществляет какие-то важные превращения почвенных веществ путем брожения, окисления, синтеза. Есть среди них микробы, способные улавливать атмосферный азот и связывать его в молекулах сложных соединений (в науке этот процесс называют азотфиксацией). Одни из азотфиксаторов, например азотобактер или клостридиум, умеют это делать сами, живя в почве самостоятельно, другие – только в содружестве (симбиозе) с высшими растениями. Будущие симбионты активно проникают в корешки бобовых, образуя на них галлы – маленькие клубеньки. Корни, зараженные такими микробами, похожи на клубок ниток с множеством узелков. Поэтому микробы и называют клубеньковыми бактериями. Научное же название их – ризобии.


   Большую часть своей жизни ризобии проводят в почве, ведя совершенно самостоятельный образ жизни. Подобно другим почвенным микроорганизмам, они питаются готовыми органическими веществами и никакого азота не фиксируют. Ризобии могут так просуществовать десятки лет в ожидании встречи с подходящим растением. Но как только счастливый случай представляется, они охотно расстаются со «свободой» и, проникнув в корни растения, строят на них свои домики-клубеньки. Тут-то ризобии и обретают свое чудесное свойство – начинают фиксировать азот.
   Все начинается с проникновения бактерий в корневой волосок растения. Дотоле очень энергично передвигавшиеся с помощью жгутиков, они, войдя в контакт с волоском, вдруг перестают двигаться, одевают себя слизью и, готовясь к «штурму» корешка, образуют так называемую инфекционную нить. Через некоторое время покровы корешка в месте прикрепления этой нити разрушаются, и бактерии беспрепятственно вторгаются во внутренние ткани, вызывая их разрастание в виде клубеньков. Утратив жгутики и размножившись делением, все они через две-три недели после образования клубенька превращаются в более крупные клетки – бактероиды. В пору цветения растения-хозяина бактероиды заполняют собой весь клубенек.
   Если разрезать зрелый клубенек, то внутри он окажется розовым из-за содержащегося в бактериях пигмента. По составу этот пигмент очень близок гемоглобину животных и назван леггемоглобином. Он и фиксирует газообразный азот. Все попытки обнаружить леггемоглобин в незараженных корешках и изолированной культуре ризобий дали отрицательные результаты. Он оказался продуктом их симбиотического союза. Что же касается основного активного начала азотфиксации – фермента нитрогеназы, то его несут с собой бактериальные клетки.
   В однолетних бобовых клубеньки функционируют один сезон, в многолетних – несколько лет подряд. Но в конце концов и они стареют и отмирают. Старые клубеньки становятся темно-бурыми и дряблыми. При надрезе из них вытекает водянистая слизь, и они превращаются в сплошную кашу. Никаких бактероидных клеток в них уже не обнаружить, все они разрушены.
   Тесное сожительство клубеньковых с корнями бобовых – пример одного из самых взаимовыгодных эндосимбиозов. Помимо азота, ри-зобии снабжают своего хозяина витаминами, а возможно, и ростовыми веществами; растение же кормит их тем, что в изобилии производит само, – углеводами. Однако первая встреча будущих симбионтов проходит отнюдь не дружелюбно. Бактерии идут в атаку, а растение активно обороняется. Основной способ его самозащиты заключается в том, что клетки корневых волосков усиленно делятся, очевидно, чтобы локализовать вторжение (в результате деления и образуются клубеньки). Кроме того, из волосков выделяются токсичные для бактерий вещества. При этом растение, реагируя на пришельцев, не делает никаких различий между ризобиями и какими-нибудь паразитическими микробами. Не говорит ли это о том, что некогда клубеньковые начинали свою симбиотическую «карьеру» с простого паразитизма? Между прочим, английский исследователь Н. Торнтол убедительно доказал, что если в почве нет бора, клубеньковые бактерии становятся настоящими паразитами своего растения-хозяина.
   Однако с того момента, как бактерии принимаются за «работу» на пользу хозяину, между ними и растением устанавливаются мир и сотрудничество. Строятся они на самой глубокой и прочной основе – взаимодействии генов обоих симбионтов. Вопрос о том, кто же теперь управляет симбиозом, большинство ученых решает в пользу растения. Как-никак, а оно все-таки организм высший, и ему не подобает быть в подчинении у одних из самых примитивных существ-невидимок, с которых, возможно, начиналась жизнь на Земле.
   Сначала думали, что ризобии не очень разборчивы в выборе растения-хозяина и могут поселяться на корнях любой бобовой культуры. Но потом оказалось, что, как и везде в живой природе, у них есть свои «вкусы» и «склонности». В зависимости от вида растения, на котором клубеньковые устраивают свое «жилье», они делятся на виды и расы. Кроме того, для жилья им подходит лишь десятая часть существующих бобовых растений (из 13 тыс. видов этого семейства клубеньки пока обнаружены у 1300, в том числе приблизительно у 200 сельскохозяйственных культур). К этому надо добавить, что среди ризобий есть и неэффективные расы, которые хотя и образуют клубеньки, но азот не фиксируют: в их клубеньках нет леггемоглобина. Следовательно, растение «даром» кормит своих «постояльцев».
   Бобовые – не единственные «счастливчики», сумевшие заманить в свои сети микробов-азотфиксаторов. Кроме них сейчас известны еще 6 семейств высших цветковых растений, у которых на корнях также вырастают желанные розовые клубеньки. Только поселяются там не ризобии, а какие-то другие микроорганизмы, природа которых точно еще не установлена. Зато доподлинно известно, что в клубеньках ольхи, лоха и казуарины вместо бактерий живут актиномицеты. Они тоже умеют фиксировать атмосферный азот. А вот в коралловидных корнях (они отличаются тем, что растут не вниз, а вверх) австралийских саговников уже давно обнаружены сине-зеленые водоросли. Примечательны они тем, что способны улавливать азот, находясь как в корнях саговника, так и в изолированной культуре.
   В отличие от клубеньковых бактерий, которые поселились в самих растениях, бесчисленные легионы их разнообразных сородичей окружают растения снаружи. Почва – их родной дом. Приведя все к одному масштабу, мы могли бы сказать, что в земле микробов во много раз больше, чем муравьев в муравейнике. По приблизительным подсчетам микробное население 1 г почвы может достигать нескольких миллиардов. Если вести расчет не по количеству, а по массе, то окажется, что в пахотном слое хорошо возделанной почвы на площади в 1 га живет от 300 до 3000 кг микроорганизмов. Общая же их масса на Земле в 25 раз превышает массу всех животных!
   Если бы вдруг исчезли все почвенные микробы, то очень скоро, исчерпав запасы минеральных солей, погибли бы и растения. За ними последовали бы животные. Только благодаря неустанной работе этих бесконечно малых и в то же время бесконечно многочисленных существ на нашей планете незримо совершаются «великие дела».
   Ни одно живое существо не способно «трудиться» с такой энергией, как микробы. За сутки они могут переработать количество пищи, в десятки раз превышающее их собственную массу. Поэтому только им и по силам вращать гигантские «маховики» круговорота веществ.
   Кроме азота, микроорганизмы вносят в почву фосфор, калий, серу, магний, поставляют растениям витамины, ауксины, гиббереллины, антибиотики и многие другие важные для их жизни вещества.
   Невидимки, населяющие почву, совсем не безразличны к растущим на ней травам, деревьям и кустарникам. Их, словно магнитом, так и притягивает к корням. Окружая корни со всех сторон, микроорганизмы создают вокруг них как бы сплошную живую муфту (ее называют ризосферой), которая почти полностью изолирует корни от земли. Фактически большую часть того, что растение извлекает из почвы, оно получает с помощью микробов, среди которых есть мастера любых «профессий».
   Однако растение подпускает к себе далеко не всех почвенных обитателей. Оно отбирает лишь тех, с кем ему выгодно вступить в содружество. Корни активно сопротивляются «атакам» всевозможных болезнетворных микробов, и в этом им помогают друзья-симбионты.
   Содружество с растениями не ограничивается ризосферой. Микробы поселяются на листьях, ветвях и стеблях, образуя так называемую эпифитную микрофлору. Их незримый мир окружает будущее растение с первых шагов его вступления в жизнь. Толпы бактерий, точно заботливые няньки, берут на свое попечение прорастающие семена. Американский физиолог А. Ровир определил, что на пяти сухих семенах овса существовало 3 тыс. микробов. Через день, когда они набухли, микробов на них стало уже 58 тыс., а еще через три дня, когда они наклюнулись, – 840 тыс.! Обосновавшись на проростке, микробы начинают выделять незаменимые для его развития соединения – витамины, аминокислоты, антибиотики, разные ростовые вещества. Для микробов это во многом продукты выделения, так сказать, «шлаки», а для растения – важнейшие стимуляторы роста.


   По-видимому, 40 % всех микроскопических обитателей проростков так или иначе помогают их развитию. Существует даже гипотеза, что большей частью своих гормонов роста – ауксинов растение обязано окружающей микрофлоре. Веществ этих много не нужно. Ведь они выполняют роль катализаторов, действующих в ничтожно малых количествах. Правда, когда растение вырастает, оно и само начинает вырабатывать гормоны.
   Те же ауксины и витамины вырабатываются микробами, поселяющимися на листьях, которые сразу же эти вещества и поглощают. В Индии растет интересное растение – паветта. На ее листьях микробактерии образуют желвачки, аналогичные клубенькам бобовых. В желвачках происходит фиксация азота воздуха. Получается, что растения «одеты» микробами «с ног до головы» и постоянно обмениваются с ними разными веществами через все свои органы и ткани. Здоровая листва не хуже корня способна дать отпор пришельцам-вредителям и укрепить иммунитет растения благодаря союзу с полезными обитателями. Кроме того, против разносчиков инфекции у нее есть еще одно оружие – фитонциды, которые попутно стоят на страже и нашего здоровья.


   Человек рождается свободным от микробов. Но стоит новорожденному сделать первый вздох и открыть рот, чтобы возвестить миру о своем появлении на свет, как вездесущие бактерии вторгаются внутрь его организма и отныне получают в нем постоянную прописку.
   К концу первых суток жизни ребенок уже заселен 12 видами бактерий. На третий – седьмой день они проникают в его кишечник. По мере дальнейшего взросления ребенка его микробное население быстро растет. В организме взрослого человека оно представлено уже сотнями видов, численность которых достигает астрономических цифр. Так, в 1 см -------
| bookZ.ru collection
|-------
|  
 -------


содержимого желудка в среднем обитает 25 тыс. бактерий, а в 1 г содержимого толстых кишок их можно насчитать до 30—40 млрд! Мало где еще в природе встретишь столь высокую плотность живых существ. Специалисты выделяют среди микробных обитателей желудка и кишечника до 250 видов.
   Но не надо пугаться такого обилия бактерий. Для нашего кишечника это совершенно нормальное явление. Его мирные сожители не только не причиняют нам ни малейшего вреда, но многие из них бдительно охраняют наше здоровье, помогая в борьбе со случайно попавшими в организм болезнетворными микробами – дизентерийными, брюшнотифозными, гнилостными и прочими. Другие обитатели кишечника синтезируют необходимые для нас витамины, аминокислоты и ферменты. Мы поглощаем эти вещества вместе с их производителями, но бактерии размножаются быстрее, чем мы успеваем их «съедать».
   Как говорит русская пословица, «что имеем – не храним, потерявши – плачем». Всю пользу микросимбионтов начинаешь сознавать только лишившись их. Чаще всего это случается, когда, не спросясь врача, мы при первом же недомогании принимаемся глотать антибиотики. Для большинства микробов, поселившихся в животе, – это яд, которого они не переносят. В результате вместе с вторгшимися носителями инфекции гибнут и наши друзья. Теперь проникшие в организм вредные микроорганизмы не встречают сопротивления и начинают усиленно размножаться. Так возникают разные осложнения, нередко оказывающиеся серьезнее основного заболевания.
   Полезная микрофлора есть и в кишечнике большинства зверей, птиц, рыб, насекомых и т. д., где она выполняет примерно те же функции. А результаты опытов на мышах и крысах позволили лишний раз убедиться в ее значении и для здоровья человека.
   В одном из экспериментов мышей оградили от возможности заразиться патогенными микробами. Микрофлора их кишечника резко отличалась тем, что содержала много полезных молочнокислых бактерий, однако в ней совсем не было потенциально хотя и болезнетворных (в случаях сильного размножения), но и в то же время обычных представителей кишечной флоры – кишечной палочки, бактерий родов протей и псевдомонас. Мыши быстро росли и проявляли большую устойчивость к бактериальным ядам. Стоило дать им пенициллин (или тетрациклин) и заразить чистой культурой кишечной палочки, как, судя по экскрементам, эти бактерии вместе с энтерококками очень быстро вытеснили молочнокислые бактерии. В результате мыши стали терять в весе.


   Значение бактерий-симбионтов было ясно продемонстрировано на крысах с убитой микрофлорой, которым давали корм, лишенный то одного, то другого витамина. Так, при отсутствии витамина K, необходимого для нормальной свертываемости крови, у них через неделю возникали кровотечения, которые прекращались, как только им вводили кишечную палочку или сарцину. Если крысам не давали тиамина (витамина В -------
| bookZ.ru collection
|-------
|  
 -------


), но позволяли поедать свои экскременты, то все оставалось нормальным. Стоило их лишить такой возможности, как у них начинали развиваться болезненные симптомы – исключительно от нехватки этого витамина.
   Что за странность, скажете вы, поедать собственные испражнения?! Не иначе как поголовное патологическое извращение, вполне достойное этих многими презираемых тварей. Однако если поинтересоваться, где у крыс живут бактерии-симбионты, этот врожденный «порок» получит ясное и простое объяснение. У большинства животных бактериальная флора концентрируется в желудке или в основной части кишечника, где происходит всасывание пищи. У крыс же она сосредоточена главным образом в задней кишке, то есть уже позади зоны максимального всасывания. Вот и получается, что все витамины, выработанные бактериями, попадают в экскременты и вместе с ними выводятся наружу. Чтобы эти витамины даром не пропадали, животные и вынуждены исправлять оплошность природы – заглатывать в качестве витаминизированных «пилюль» собственные экскременты.
   Можно сказать, что жизнь наших буренок и вообще рогатого скота целиком зависит от микробного населения их желудка. Не было бы у них симбионтов – не быть бы им сытыми травой и не быть жвачными!
   Из школьного курса зоологии многие, наверное, помнят, какой большой и сложно устроенный желудок у коров. Четыре пятых его объема занимает самый важный первый отдел – рубец. Вместимость рубца около 100 л. Фактически это огромный бактериальный бродильный чан. В нем растительная пища, смешанная со слюной, в течение 12 ч остается всецело во власти богатого микробного населения. Желудочный же сок выделяется у коровы только в последнем отделе желудка – сычуге.
   Благодаря ферментам главных обитателей рубца – руминококков, бактероидов и бутиривибрионов, «работающих» без доступа кислорода, основа растительной пищи – клетчатка, или целлюлоза, разлагается на сравнительно простые продукты, которые тут же всасываются стенками рубца. Микробы снабжают животное белками и всеми необходимыми витаминами. Поэтому жвачные могут нормально расти и существовать без белковой пищи. Коровам можно давать, например, в качестве источника азота такой дешевый продукт, как мочевина. Из нее эндосимбионты сами вырабатывают нужный их хозяину белок, причем он ничем не хуже белка, содержащегося в пищевых продуктах. Кормовые белки бактериального происхождения давно выпускаются промышленностью.
   Вместе с бактериями в рубце жвачных обитает несколько родов жгутиконосцев и инфузорий, которые больше нигде в природе не встречаются (исключая пищеварительный тракт бегемотов и лошадей). Они тоже способны расщеплять клетчатку и вносят свой вклад в общее дело.
   Спустимся теперь сразу на много ступенек вниз по «животной лестнице» и присмотримся повнимательнее к насекомым. У них микросимбионтов для изучения более чем достаточно.


   Давно известно, что тараканы могут месяцами, а то и всю жизнь питаться бумагой, тряпьем, ватой, картоном, оставаясь при этом абсолютно здоровыми и продолжая регулярно размножаться. Что это за удивительная способность? И какие питательные вещества могут быть в бумаге?
   Разгадка секрета все та же. В кишечнике тараканов обитает масса помощников-симбионтов, облегчающих суровую жизнь своих хозяев. Это всевозможные микробы и простейшие. Бактериями, кроме того, буквально забита часть клеток (их называют мицетоцитами) так называемого жирового тела, активно участвующих в обмене веществ. А у самок они концентрируются также в яичнике, где незадолго до откладки кокона ими заражаются яйца. Молодые личинки, едва появившиеся на свет, уже заражены бактериями в полном ассортименте.
   От бактерий зависит еще одно удивительное свойство тараканов, которого нет у высших животных: они способны использовать для постройки своего тела минеральную серу. Насекомым специально добавляли в пищу сульфаты, содержащие радиоактивный изотоп серы. Вскоре такую меченую серу находили уже в составе их белков. Прусаки, лишенные симбионтов, подобную способность утрачивали.
   Еще интереснее симбиоз у близких родственников тараканов – термитов. Термиты способны питаться древесиной благодаря помощи жгутиконосцев. Впервые об этом поведал миру в начале 30-х гг. ХХ в. американский протозоолог Лемюэль Кливленд. Его открытие было подлинной научной сенсацией, которая неожиданно привлекла к миру шестиногих внимание многих исследователей с совершенно новой стороны. Теперь стало легче подбирать ключи к тайнам однообразного «меню» других насекомых, потому что руководящая идея уже была найдена и торжествовала: надо искать симбионтов!
   Термиты «отвели» для своих постояльцев заднюю кишку. Она у них сильно расширена и буквально набита жгутиконосцами, бактериями и спирохетами. Большинство видов этих жгутиконосцев нигде, кроме как у термитов (и еще одного вида тараканов), до сих пор не обнаружено.
   Кливленд убивал жгутиконосцев, помещая термитов на несколько часов в камеру с повышенным давлением и достаточным количеством кислорода, что не причиняло насекомым непосредственного вреда, но губительно воздействовало на жгутиконосцев. Таких термитов он продолжал кормить обычной пищей – древесными опилками и фильтровальной бумагой, соблюдая и прочие необходимые условия. Через две-три недели все подопытные термиты, лишенные жгутиконосцев, погибли. Смерть удавалось предотвратить, если в садок к неполноценным насекомым подсаживали несколько нормальных, у которых те слизывали капельки выделений из задней кишки. Жизнь термитов можно было также продлить, давая им глюкозу.
   Вывод, сделанный из этих опытов, совершенно очевиден: жгутиконосцы играют в жизни термитов ту же роль, что бактерии у жвачных. Кливленду удалось даже наблюдать в микроскоп, как эти неутомимые «работяги» захватывали кусочки древесины. Затем из их компании выделили первый вид из рода трихомонас и заставили его расти в специальной среде вне тела хозяина. От него получили и чистый фермент, разлагающий клетчатку, – целлюлозу. Секрет питания термитов был окончательно раскрыт.
   Ученые стали изучать симбионтов обстоятельнее и, в частности, обратили внимание на одного жгутиконосца, выделенного из австралийских термитов. Кажется, весь он покрыт жгутиками. На переднем конце клетки торчит пучок из четырех жгутиков, которые постоянно колышутся. Исследователи рассмотрели жгутики в электронный микроскоп – и тут их ждало открытие. Оказалось, что из четырех жгутиков только один, самый длинный, действительно настоящий и принадлежит этому одноклеточному существу; остальные три – вовсе не жгутики, а отдельные бактериоподобные организмы, прозванные за спиральную форму тела спирохетами.
   Подобными организмами оказались и все остальные «жгутики», покрывающие клетку симбионта. По поверхности этой клетки выстроились небольшие выросты в виде полукруглых петелек. С задней стороны на них сидит по одной спирохете, с передней – по одной бактерии-палочке. Внутри самого жгутиконосца обитают еще какие-то бактерии.


скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Поделиться ссылкой на выделенное