Е. Козлова.

Общая биология

(страница 2 из 8)

скачать книгу бесплатно

В гетеролизосомах (или фаголизосомах) протекает процесс переваривания материала, который поступает в клетку извне путем активного транспорта (пино-цитоза и фагоцитоза).

В аутолизосомах (или цитолизосомах) подвергаются разрушению собственные клеточные структуры, которые завершили свою жизнь.

Вторичные лизосомы, которые уже перестали переваривать материал, называются остаточными тельцами. В них нет гидролаз, содержится непереваренный материал.

При нарушении целостности мембраны лизосом или при заболевании клетки гидролазы поступают внутрь клетки из лизосом и осуществляют ее самопереваривание (автолиз). Этот же процесс лежит в основе процесса естественной гибели всех клеток (апо-птоза).

Микротельца

Микротельца составляют сборную группу органелл. Они представляют собой пузырьки диаметром 100–150 нм, отграниченные одной мембраной. Содержат мелкозернистый матрикс и нередко белковые включения.

9. Строение и функции эндоплазматического ретикулума, комплекса Гольджи

Эндоплазматическая сеть

Эндоплазматический ретикулум (ЭПС) – система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция. Комплекс Гольджи

Пластинчатый комплекс Гольджи – это упаковочный центр клетки. Представляет собой совокупность дик-тиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома – стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки.

При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гли-копротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

10. Строение и функции немембранных структур клетки

Рибосома

Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20–30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК. Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой.

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма.

Микротрубочки

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета – 15 нм, толщина стенки – около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек.

Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Виды микрофила-ментов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмал-еммой и по окружности ядра. Выполняют опорную (каркасную) роль.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра. Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, расположенных взаимоперпендикулярно.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Внутри клетки находится цитоплазма. Она состоит из жидкой части – гиалоплазмы (матрикса), орга-нелл и цитоплазматических включений.

Гиалоплазма – основное вещество цитоплазмы. Ги-алоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях: золеобразном (жидком) и гелеобразном, которые взаимно переходят одно в другое.

Функции гиалоплазмы:

1) образование истинной внутренней среды клетки;

2) поддержание определенной структуры и формы клетки;

3) обеспечение внутриклеточного перемещения веществ и структур;

4) обеспечение адекватного обмена веществ как внутри самой клетки, так и с внешней средой.

Включения – это относительно непостоянные компоненты цитоплазмы. Выделяют:

1) запасные питательные вещества, которые используются самой клеткой в периоды недостаточного поступления питательных веществ извне;

2) продукты, которые подлежат выделению из клетки;

3) балластные вещества некоторых клеток.

11. Вирусы. Строение и размножение. Бактериофаги

Вирусы – доклеточные формы жизни, которые являются облигатными внутриклеточными паразитами, т. е. могут существовать и размножаться только внутри организма хозяина.

Многие вирусы являются возбудителями заболеваний, таких как СПИД, коревая краснуха, эпидемический паротит (свинка), ветряная и натуральная оспа.

Вирусы имеют микроскопические размеры, многие из них способны проходить через любые фильтры. В отличие от бактерий, вирусы нельзя выращивать на питательных средах, так как вне организма они не проявляют свойств живого. Вне живого организма (хозяина) вирусы представляют собой кристаллы веществ, не имеющих никаких свойств живых систем.

Строение вирусов

Зрелые вирусные частицы называются вирионами. Фактически они представляют собой геном, покрытый сверху белковой оболочкой. Эта оболочка – капсид. Она построена из белковых молекул, защищающих генетический материал вируса от воздействия нуклеаз – ферментов, разрушающих нуклеиновые кислоты.

У некоторых вирусов поверх капсида располагается суперкапсидная оболочка, также построенная из белка. Генетический материал представлен нуклеиновой кислотой. У одних вирусов это ДНК (так называемые ДНК-овые вирусы), у других – РНК (РНК-овые вирусы).

Размножение вирусов

При внедрении вируса внутрь клетки-хозяина происходит освобождение молекулы нуклеиновой кислоты от белка, поэтому в клетку попадает только чистый и незащищенный генетический материал. Если вирус ДНК, то молекула ДНК встраивается в молекулу ДНК хозяина и воспроизводится вместе с ней. Так появляются новые вирусные ДНК. Все процессы, протекающие в клетке, замедляются, клетка начинает работать на воспроизводство вируса. Так как вирус является облигатным паразитом, то для его жизни необходима клетка-хозяин, поэтому она не погибает в процессе размножения вируса. Гибель клетки происходит только после выхода из нее вирусных частиц.

Ретровирус, обеспечивающие обратную транскрипцию: на матрице РНК строится одноцепочечная молекула ДНК. Из свободных нуклеотидов достраивается комплементарная цепь, которая и встраивается в геном клетки-хозяина. С полученной ДНК информация переписывается на молекулу и-РНК, на матрице которой затем синтезируются белки ретровируса.

Бактериофаги

Это вирусы, паразитирующие на бактериях. Они играют большую роль в медицине и широко применяются при лечении гнойных заболеваний, вызванных стафилококками и др. Генетический материал нахо-дитсяв головке бактериофага, которая сверху покрыта белковой оболочкой (капсидом). Их функция – узнавать свой вид бактерий, осуществлять прикрепление фага к клетке. После прикрепления ДНК выдавливается в бактериальную клетку, а оболочки остаются снаружи.

12. Гаметы. Свойства, строение и функции яйцеклетки и сперматозоида

Гаметы обеспечивают передачу наследственной информации между поколениями особей. Это высо-кодифференцированные клетки, ядра которых содержат всю необходимую наследственнуюинформацию для развития нового организма.

По сравнению ссоматическими клетками гаметы имеют ряд характерных особенностей. Первое отличие – наличие в ядре гаплоидного набора хромосом, что обеспечивает воспроизведение в зиготе типичного для организмов данного вида диплоидного набора.

Второе отличие – необычное ядерно-цитоплазмати-ческое соотношение. Уяйцеклеток оно снижено за счет того, что имеется много цитоплазмы, где содержится питательный материал (желток) для будущего зародыша. В сперматозоидах, наоборот, ядерно-цито-плазматическое соотношение высокое, так как мал объем цитоплазмы.

Третье отличие – низкий уровень обмена веществ в гаметах. Их состояние похоже на анабиоз. Мужские половые клетки вообще не вступают в митоз, а женские гаметы получают эту способность только после оплодотворения или воздействия фактора, индуцирующего партеногенез.

Яйцеклетка – крупная неподвижная клетка, обладающая запасом питательных веществ. Размеры женской яйцеклетки составляют 150–170 мкм. Функции питательных веществ различны. Их выполняют:

1) компоненты, нужные для процессов биосинтеза белка;

2) специфические регуляторные вещества;

3) желток обеспечивающий питание зародыша в эмбриональном периоде.

Яйцеклетка имеет оболочки, которые препятствуют проникновению в яйцеклетку более одного сперматозоида.

Яйцеклетка обычно имеет шарообразную или слегка вытянутую форму, снаружи окружена блестящей оболочкой, которая покрыта лучистым венцом, или фолликулярной оболочкой. Она играет защитную роль, питает яйцеклетку.

Яйцеклетка лишена аппарата активного движения. Для яйцеклетки характерна плазматическая сегрегация.

Сперматозоид – это мужская половая клетка (гамета). Он обладает способностью к движению. Размеры сперматозоида микроскопические: длина этой клетки у человека составляет 50–70 мкм.

Строение сперматозоида

Сперматозоид имеет головку, шейку, промежуточный отдел и хвост в виде жгутика. Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина. На переднем конце головки (на ее вершине) располагается акросома, которая представляет собой видоизмененный комплекс Гольджи. Здесь происходит образование гиалуронидазы – фермента, который способен расщеплять мукополисаха-риды оболочек яйцеклетки. В шейке сперматозоида расположена митохондрия, которая имеет спиральное строение. Она необходима для выработки энергии, которая тратится на активные движения сперматозоида по направлению к яйцеклетке. Оболочка сперматозоида имеет специфические рецепторы, которые узнают химические вещества, выделяемые яйцеклеткой. Поэтому сперматозоиды человека способны к направленному движению по направлению к яйцеклетке (это называется положительным хемотаксисом).

13. Оплодотворение

Оплодотворение – это процесс слияния половых клеток. В результате оплодотворения образуется диплоидная клетка – зигота, это начальный этап развития нового организма. Оплодотворению предшествует выделение половых продуктов, т. е. осеменение. Существует два типа осеменения:

1) наружное. Половые продукты выделяются во внешнюю среду;

2) внутреннее. Самец выделяет половые продукты в половые пути самки.

Оплодотворение состоит из трех последовательных стадий: сближения гамет, активации яйцеклетки, слияния гамет (сингамии), акросомной реакции.

Сближение гамет

Обусловлено совокупностью факторов, повышающих вероятность встречи гамет: половой активностью самцов и самок, избыточной продукцией сперматозоидов, крупными размерами яйцеклеток, выделение гаметами гамонов (специфических веществ, способствующих сближению и слиянию половых клеток). Яйцеклетка выделяет гиногамоны, которые обусловливают направленное движение к ней сперматозоидов (хемотаксис), а сперматозоиды выделяют андрога-моны.

Акросомная реакция – это выброс протеолитических ферментов, которые содержатся в акросоме сперматозоида. Под их влиянием происходит растворение оболочек яйцеклетки в месте наибольшего скопления сперматозоидов. Снаружи оказывается участок цитоплазмы яйцеклетки, к которому прикрепляется только один из сперматозоидов. После этого плазматические мембраны яйцеклетки и сперматозоида сливаются, образуется цитоплазматический мостик, сливаются цитоплазмы обеих половых клеток. Далее в цитоплазму яйцеклетки проникают ядро и цен-триоль сперматозоида, а его мембрана встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида отделяется и рассасывается.

Активация яйцеклетки происходит в результате контакта ее со сперматозоидом. Имеет место кортикальная реакция, защищающая яйцеклетку от полиспермии.

В яйцеклетке изменяется обмен веществ. Завершается активация яйцеклетки началом трансляционного этапа биосинтеза белка.

Слияние гамет

В то время как в яйцеклетке завершается мейоз, ядро проникшего в нее сперматозоида приобретает другой вид – сначала интерфазного, а затем и профазного ядра. Ядро сперматозоида превращается в мужской пронуклеус: в нем удваивается количество ДНК, набор хромосом в нем соответствует n2c (содержит гаплоидный набор редуплицированных хромосом).

После завершения мейоза ядро превращается в женский пронуклеус и также содержит количество наследственного материала, соответствующее n2c.

Оба пронуклеуса проделывают сложные перемещения внутри будущей зиготы, сближаются и сливаются, образуя синкарион (содержит диплоидный набор хромосом) с общей метафазной пластинкой. Затем формируется общая мембрана, возникает зигота. Первое ми-тотическое деление зиготы приводит к образованию двух первых клеток зародыша (бластомеров), каждая из которых несет диплоидный набор хромосом 2n2c.

14. Размножение. Бесполое размножение, его роль и формы

Размножение – универсальное свойство всех живых организмов, способность воспроизводить себе подобных. С его помощью происходит сохранение во времени видов и жизни в целом. Жизнь клеток, намного короче жизни самого организма, поэтому его существование поддерживается только за счет размножения клеток. Различают два способа размножения – бесполое и половое. При бесполом размножении главным клеточным механизмом, обеспечивающим увеличение числа клеток, является митоз. Родителем является одна особь. Потомство представляет собой точную генетическую копию родительского материала.

1. Биологическая роль бесполого размножения Поддержание приспособленности усиливает значение стабилизирующего естественного отбора; обеспечивает быстрые темпы размножения; используется в практической селекции.

2. Формы бесполого размножения

У одноклеточных организмов выделяют следующие формы бесполого размножения: деление, эндогонию, шизогонию и почкование, спорообразование.

Деление характерно для амебы, инфузории, жгутиковые. Сначала происходит митотическое деление ядра, затем цитоплазма делится пополам все более углубляющейся перетяжкой. При этом дочерние клетки получают примерно одинаковое количество цитоплазмы и органоидов.

Эндогония (внутреннее почкование) характерно для токсоплазмы. При образовании двух дочерних особей материнская дает лишь двух потомков. Но может быть внутреннее множественное почкование, что приведет к шизогонии.

Встречается у споровиков (малярийного плазмодия) и др. Происходит многократное деление ядра без цитокинеза. Из одной клетки образуется очень много дочерних.

Почкование (у бактерий, дрожжевых грибов и др.). При этом на материнской клетке первоначально образуется небольшой бугорок, содержащий дочернее ядро (нуклеоид). Почка растет, достигает размеров материнской особи, а затем отделяется от нее.

Спорообразование (у высших споровых растений: мхов, папоротников, плаунов, хвощей, водорослей). Дочерний организм развивается из специализированных клеток – спор, содержащих гаплоидный набор хромосом.

3. Вегетативная форма размножения

Характерна для многоклеточных организмов. При этом новый организм образуется из группы клеток, отделяющихся от материнского организма. Растения размножаются клубнями, корневищами, луковицами, корнеклубнями, корнеплодами, корневой порослью, отводками, черенками, выводковыми почками, листьями. У животных вегетативное размножение встречается у самых низкоорганизованных форм. Ресничные черви делятся на две части, и в каждой из них восстанавливаются недостающие органы за счет неупорядоченного деления клеток. Кольчатые черви могут восстанавливать целый организм из одного членика. Этот вид деления лежит в основе регенерации – восстановления утраченных тканей и частей тела (у кольчатых червей, ящериц, саламандр).

15. Половое размножение. Его виды, роль. Нетипичное половое размножение

Половое размножение встречается в основном у высших организмов.

При половом размножении потомство генетически отличается от своих родителей, так как между родителями происходит обмен генетической информацией.

Основой полового размножения является мейоз. Родителями являются две особи – мужская и женская, они вырабатывают разные половые клетки.

Половое размножение осуществляется через гаметы – половые клетки, имеющие гаплоидный набор хромосом и вырабатывающиеся в родительских организмах. Слияние родительских клеток приводит к образованию зиготы, из которой в дальнейшем образуется организм-потомок. Половые клетки образуются в гонадах– половых железах.

Процесс образования половых клеток называется гаметогенезом.

Если мужские и женские гаметы образуются в организме одной особи, то ее называют гермафродитной.

Виды полового размножения

1. При конъюгации специальные половые клетки (половые особи) не образуются. При этом имеются два ядра – макро– и микронуклеус. При этом микронуклеус сначала делится митотически. Из него формируются стационарное и мигрирующее ядра, имеющие гаплоидный набор хромосом. Затем две клетки сближаются, между ними обра-зуется протоплазматический мостик. По нему происходит перемещение в цитоплазму партнера мигрирующего ядра, которое затем сливается со стационарным. Формируются обычные микро– и макронуклеусы, клетки расходятся. При этом процессе не происходит увеличения количества особей, а происходит обмен наследственной информацией.

2. При копуляции (у простейших) происходят образование половых элементов и их попарное слияние. При этом две особи приобретают половые различия и полностью сливаются, образуя зиготу.

Различия между гаметами в процессе эволюции

Изогамия, когда половые клетки еще не имеют диф-ференцировки. При дальнейшем усложнении процесса возникает анизогамия: мужские и женские гаметы различаются, а количественно (у хламидомонад). Наконец, у водоросли вольвокса большая гамета становится неподвижной и самой крупной из всех гамет.

Нетипичное половое размножение

Партеногенез – дочерние организмы развиваются из неоплодотворенных яйцеклеток.

Значение партеногенеза:

1) размножение возможно при редких контактах разнополых особей;

2) резко возрастает численность популяции;

3) встречается в популяциях с высокой смертностью в течение одного сезона.

Виды партеногенеза:

1) облигатный (обязательный) партеногенез;

2) циклический (сезонный) партеногенез;

3) факультативный (необязательный) партеногенез. Выделяют также естественный и искусственный

партеногенез.

Гиногенез. Сперматозоид проникает в яйцеклетку и лишь стимулирует ее развитие. Ядро сперматозоида при этом с ядром яйцеклетки не сливается.

Андрогенез. В развитии зародыша участвует мужское ядро, привнесенное в яйцеклетку, а ядро яйцеклетки при этом гибнет. Яйцеклетка дает лишь питательные вещества своей цитоплазмы.

Полиэмбриония. Зигота (эмбрион) делится на несколько частей бесполым способом, каждая из которых развивается в самостоятельный организм.

Здесь представлен ознакомительный фрагмент книги.
Для бесплатного чтения открыта только часть текста (ограничение правообладателя). Если книга вам понравилась, полный текст можно получить на сайте нашего партнера.

Купить и скачать книгу в rtf, mobi, fb2, epub, txt (всего 14 форматов)



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8

Поделиться ссылкой на выделенное