А. Дроздов.

Полный справочник невропатолога.

(страница 4 из 52)

скачать книгу бесплатно

Волокна типа С по строению безмиелиновые, очень тонкие, всего 0,5–2,0 мкм в диаметре. Они также обнаруживаются в вегетативной нервной системе в составе постганглионарных волокон, осуществляя проведение от рецепторов тепла, холода, давления и боли. Эти волокна отличаются наиболее медленной скоростью проведения (не больше 3 м/с). Их потенциал действия отличается самой большой (по сравнению с другими типами) длительностью развития потенциала действия: у теплокровных животных и человека – до 2 мс.

Регенерация

Волокна способны существовать и выполнять свою функцию только тогда, когда они связаны с телом нейрона. Повреждение волокна ведет к нарушению или утрате способности проводить возбуждение. Перерезка ведет к гибели отсеченной части волокна. Однако волокна способны регенерировать за счет гипертрофии (эндорепродукции). Разрушение отделенного волокна и образование нового является сложным и длительным процессом и протекает в несколько последовательных стадий. После перерезки миелиновый слой перерождается в жировые капли. Леммо-циты осуществляют дегенерацию осевого цилиндра с помощью гидролитических ферментов лизосом. В результате на месте волокна остается цепь леммоцитов. Дальше начинается регенерация волокна. От места его отделение в ложе, образованной шваннов-скими клетками, начинает прорастать колба роста. Регенерация осуществляется с примерной скоростью 0,5–4,5 мм за сутки в зависимости от строения волокна и местоположения его в организме.

Рефлекторная дуга

Деятельности нервной системы присущ рефлекторный характер. Еще в XVII в. французский философ и математик Рене Декарт дал описание рефлекторному акту. Он отметил реакцию организма на раздражение и высказал предположение о существовании пути, по которому проходит нервное возбуждение. Сам термин «рефлекс» был выдвинут позже – в XVIII в. – чешским ученым Дж. Прохазкой (с латинского «рефлекс» – отраженное действие). В дальнейшем И. М. Сеченов в своей работе «Рефлексы головного мозга» доказал, что ответы нервной системы на различного рода раздражения протекают по рефлекторному механизму, т. е. все сознательные и бессознательные действия имеют рефлекторное происхождение. Под рефлексом понимается конкретная реакция организма на раздражитель внутренней среды либо поступивший извне с обязательным участием центральной нервной системы. Рефлексы принято называть функциональными единицами нервной деятельности.

Рефлексы поддаются классификации по различным критериям. Так, в зависимости от уровня замыкания дуги, т. е. по месту локализации рефлекторного центра, рефлексы подразделяют на спинальные (рефлекс замыкается в спинном мозге), бульбарные (рефлекторный центр – продолговатый мозг), мезэнцефальные (замыкание рефлекторной дуги осуществляется в среднем мозге), диэнцефальные и кортикальные рефлекторные центры находятся в конечном мозге и коре больших полушарий соответственно. По эффекторному признаку они бывают соматические, когда эфферентный путь рефлекса осуществляет двигательную иннервацию скелетной мускулатуры, и вегетативные, когда эффекторами являются внутренние органы.

В зависимости от вида раздражаемых рецепторов рефлексы делят на экстероцептивные (если рецептор воспринимает информацию из внешней среды), проприо-цептивные (рефлекторная дуга начинается от рецепторов костно-мышечно-сухожильного аппарата) и интероцептивные (от рецепторов внутренних органов). Интероцептивные рефлексы, в свою очередь, подразделяются на висцеро-висцеральные (рефлекторная дуга связывает два внутренних органа), висцеро-мышечные (рецепторы находятся на мышечно-сухожильном аппарате, эффектор – внутренний орган) и висцеро-кутанные (рецепторы локализованы в коже, рабочие органы – внутренности). По Павлову, рефлексы делят на условные (выработанные в течение жизни, специфичные для каждого индивида) и безусловные (врожденные, видоспецифичные: пищевые, половые, оборонительно-двигательные, гомеостатические и др.).

Независимо от вида рефлекса его рефлекторная дуга содержит рецептор, афферентный путь, нервный центр, эфферентный путь, рабочий орган и обратную связь. Исключением являются аксон-рефлексы, рефлекторная дуга которого располагается в пределах одного нейрона: чувствительные отростки генерируют центростремительные импульсы, которые, проходя через тело нейрона, по аксону распространяются в центральную нервную систему, а по ответвлению аксона импульсы доходят уже до эффектора. Подобные рефлексы относят к функционированию метасимпатической нервной системы, через них, например, осуществляются механизмы регулирования тонуса сосудов и деятельности желез кожи.

Функцию восприятия раздражения и превращения его в энергию возбуждения выполняют рецепторы рефлекторных дуг. Ре-цепторная энергия возбуждения носит характер локального ответа, что имеет значение в градации возбуждения по силе.

Исходя из строения и происхождения рецепторов, их можно разделить на первично-чувствующие, вторично-чувствующие и свободные нервные окончания. У первых в качестве рецептора действует сам нейрон (развивается из нейроэпителия), т. е. между раздражителем и первым афферентным нейроном нет структур-посредников. Локальный ответ первично-чувствующих рецепторов – рецепторный потенциал – является и генераторным потенциалом, т. е. вызывающим возникновение потенциала действия на мембране афферентного волокна. К первично-чувствующим рецепторам относят зрительные, обонятельные, хемо– и ба-рорецепторы сердечно-сосудистой системы.

Вторично-чувствующие клетки представляют собой специальные структуры ненервного происхождения, которые с помощью синаптических нейрорецепторных контактов взаимодействуют с дендритами псевдоуниполярных чувствительных клеток. Рецеп-торный потенциал, возникающий под действием раздражителя, во вторично-чувствующих клетках не является генераторным и не вызывает возникновения потенциала действия на мембране афферентного волокна. Возбуждающий постсинаптический потенциал возникает лишь через механизм выделения рецептор-ной клеткой медиатора. Градация силы раздражителя осуществляется посредством экскреции различных количеств медиатора (чем больше выделяется медиатора, тем сильнее раздражитель).

Ко вторично-чувствующим клеткам относят слуховые, вестибулярные, каротидные, тактильные и другие рецепторы. Иногда в связи с особенностями функционирования к этой группе относят фоторецепторы, которые с анатомической точки зрения и в связи с происхождением из нейроэпителия являются вторично-чувствующими.

Свободные нервные окончания представляют собой ветвления дендритов псевдоуниполярных чувствительных клеток и локализуются почти во всех тканях человеческого тела.

По энергетической природе раздражителя, на который реагирует рецептор, они делятся на механорецепторы (тактильные, барорецепторы, волюморецепторы, слуховые, вестибулярные; они, как правило, воспринимают механическое раздражение при помощи выростов клетки), хеморецепторы (обонятельные), хемо-рецепторы сосудов, центральной нервной системы, фоторецепторы (воспринимают раздражение через палочко– и колбочковид-ные выросты клетки), терморецепторы (реагируют на изменение «тепло-холод» – тельца Руфини и колбы Краузе слизистых оболочек) и ноцицепторы (неинкапсулированные болевые окончания).

Пострецепторным образованием рефлекторных дуг является афферентный путь, образованный псевдоуниполярным чувствительным нейроном, тело которого лежит в спинальном ганглии, а аксоны образуют задние корешки спинного мозга. Функция афферентного пути – проведение информации к центральному звену, более того, на данном этапе происходит кодирование информации. Для этих целей в организме позвоночных применяется двоичный код, составленный из пачек (залпов) импульсов и промежутков между ними. Существует два основных вида кодирования: частотное и пространственное.

Первое заключается в формировании различного числа импульсов в пачке, разного количества пачек, их длительности и длительности перерывов между ними в зависимости от силы нанесенного на рецептор раздражения. Пространственное кодирование осуществляет градацию силы раздражителя, задействуя различное количество нервных волокон, по которым одновременно проводится возбуждение.

В состав афферентного пути входят преимущественно А-?, А-? и А-? волокна.

Пройдя по волокнам, нервный импульс попадает в рефлекторный центр, который в анатомическом смысле представляет собой совокупность нейронов, расположенных на определенном уровне центральной нервной системы и принимающих участие в формировании данного рефлекса. Функция рефлекторного центра состоит в анализе и синтезе информации, а также в переключении информации с афферентного на эфферентный путь.

В зависимости от отдела нервной системы (соматического и автономного) рефлексы, центр которых расположен в спинном мозге, различаются по локализации вставочных нейронов. Так, для соматической нервной системы рефлекторный центр расположен в промежуточной зоне между передними и задними рогами спинного мозга. Рефлекторный центр вегетативной нервной системы (тела вставочных нейронов) лежит в задних рогах. Соматический и вегетативный отделы нервной системы также отличаются по локализации эфферентных нейронов. Тела моторных нейронов соматической нервной системы лежат в передних рогах спинного мозга, тела преганглионарных нейронов автономной системы – на уровне средних рогов.

Аксоны обоих типов клеток формируют эфферентный путь рефлекторной дуги. В соматической нервной системе он непрерывающийся, его составляют волокна типа А-?. Исключением являются лишь А-? волокна, проводящие возбуждение от клеток спинного мозга к интрафузальным волокнам мышечных веретен. Эфферентный путь автономной нервной системы прерывается в вегетативном ганглии, расположенном или интрамурально (парасимпатическая часть), или близ спинного мозга (отдельно или в симпатическом стволе – симпатическая часть). Преганглио-нарное волокно относится к В-волокнам, постганглионарное – к группе С.

Рабочим органом для соматического отдела нервной системы является поперечно-полосатая скелетная мышца, в вегетативной дуге эффектор – железа либо мышца (гладкая или поперечно-полосатая сердечная). Между эфферентным путем и рабочим органом расположен химический мионевральный либо нейросекре-торный синапс.

Рефлекторная дуга замыкается в кольцо благодаря обратной афферентации – потоку импульсов от рецепторов эффектора обратно в рефлекторный центр. Функция обратной связи – сигнализация в центральную нервную систему о выполненном действии. Если оно выполнено недостаточно, нервный центр возбуждается – рефлекс продолжается. Также за счет обратной афферентации осуществляется контроль периферической деятельности центральной нервной системой.

Различают отрицательную и положительную обратные связи. Первая при выполнении определенной функции запускает механизм, угнетающий эту функцию. Положительная обратная связь заключается в дальнейшей стимуляции функции, которая уже выполняется или в угнетении функции, которая уже угнетена. Положительная обратная афферентация встречается редко, так как приводит биологическую систему в неустойчивое положение.

Простые (моносинаптические) рефлекторные дуги состоят лишь из двух нейронов (афферентного и эфферентного) и различаются только в проприоцептивных рефлексах. Остальные дуги включают все выше указанные компоненты.

ЦНС

Центральная нервная система, включающая головной и спинной мозг, обеспечивает самые сложные взаимоотношения организма с окружающей средой, управляя деятельностью всех тканей, органов и систем, отвечая за приспособление и формируя целенаправленное, сознательное поведение человека. Согласно нейронной теории, центральная нервная система представляет собой совокупность нервных клеток, связанных между собой синап-тическими соединениями. Нервные клетки, сочетаясь в структурах головного и спинного мозга, образуют скопления – нервные центры, специализированные на выполнение определенной функции и отвечающие за то или иное действие или состояние. Среди таких образований можно назвать центры чувствительные, двигательные, вегетативные, центры психических функций и другие. В пределах центральной нервной системы они располагаются непроизвольно и имеют определенную четкую локализацию (например, дыхательный и сосудодвигательный центр в продолговатом мозге). В ЦНС проходит большое количество волокон, соединяющих разные части мозга.

Различают нервные центры двух типов. Центры ядерного типа – это объединение нервных клеток со сходной морфологией и функционированием, соединенных синапсами. Такие центры встречаются в спинном мозге, стволе головного мозга и белом веществе конечного мозга. Для экранного типа характерно распределение нейронов по слоям. На них проецируются нервные импульсы. Центры экранного типа обнаруживаются в коре головного мозга, мозжечка, буграх четверохолмия промежуточного мозга, в сетчатке.

Вход информации в нервный центр осуществляется по афферентным волокнам. Далее происходит ее обработка возбуждающими или тормозными звеньями центра, а затем выход по эфферентным нейронам.

Как в головном, так и в спинном мозге различают серое и белое вещество. Серое вещество содержит тела нейронов и ближайшие ветвления дендритов и аксонов; белое включает волокна, покрытые миелином. В головном мозге в составе белого вещества имеются различной величины и формы островки, состоящие из серого вещества, – базальные ядра. Волокна центральной нервной системы образуют проводящие пути, связывающие отделы центральной части, а также нервные центры.


Спинной мозг


Спинной мозг – наиболее древняя часть центральной нервной системы, образующаяся из туловищного отдела нервной трубки. В продолжение его формирования в нем различают три слоя. Внутренний – эпендимный, образованный нейробластами, из которых формируются нервные клетки, и глиобластами, дающими начало астро– и олигодендроцитам макроглии. Средний – плащевой, или мантийный, слой, который образует серое вещество. Наружный слой – краевая вуаль – это отростки нейронов, далее оформляющиеся в белое вещество.


Внешнее строение


Внешне спинной мозг выглядит как длинный тяж цилиндрической формы, чуть сплющенный в передне-заднем направлении и разделенный на сегменты, соответствующие одной паре спинномозговых нервов. Являясь самым филогенетически старым образованием центральной нервной системы, он в большой степени сохранил метамерность организации. Спинной мозг располагается в позвоночном канале, образованном дугами позвонков; его корешки попарно образуют справа и слева спинномозговые нервы, которые выходят через межпозвонковые отверстия. Верхняя граница спинного мозга проецируется на край большого затылочного отверстия, где он переходит в головной. В каудальном направлении спинной мозг продолжается до I–II поясничного позвонка, оканчиваясь мозговым конусом, а далее переходит в терминальную нить, которая в начале еще содержит нервную ткань, а потом полностью замещается на соединительную ткань оболочек. Наружная часть терминальной нити, длина которой у взрослого человека до 8 см, заканчивается на уровне II копчикового позвонка, где срастается с его надкостницей. Внутренняя часть терминальной нити, содержащая нервную ткань, составляет по длине примерно 15 см и продолжается до уровня тела II крестцового позвонка.

Общая длина спинного мозга от 41–42 см у женщин и до 45 см у мужчин. По массе он составляет 34–38 г, около 2 % от веса головного мозга.

На своем протяжении спинной мозг образует два утолщения – шейное и пояснично-крестцовое. Их существование обусловлено тем, что от этих частей спинного мозга иннервируются верхние и нижние конечности, имеющие большое функциональное напряжение. В утолщениях обнаруживается большее, чем в других частях спинного мозга, количество нейронов и волокон.

На поверхности спинного мозга видно несколько борозд. На передней поверхности хорошо заметна глубокая передняя срединная щель. Сзади имеется задняя срединная борозда, которая вместе с первым образованием условно разделяет спинной мозг на две одинаковых части – правую и левую. Вглубь от нее до серого вещества проникает глиальная задняя срединная перегородка. По бокам от передней срединной щели проходит парная пе-реднелатеральная борозда, из которой выходят передние корешки спинномозговых нервов (двигательные). Также по этой борозде проходит граница боковых и передних канатиков белого вещества. Двигательные корешки содержат аксоны мотонейронов нейроцитов переднего рога серого вещества. На дорсальной поверхности аналогично по отношению к задней срединной борозде располагаются две заднелатеральных борозды, являющиеся местом вхождения задних (чувствительных) корешков спинномозговых нервов и служащих границей между боковыми и задними канатиками. Задние корешки включают аксоны псевдоуниполярных нейронов, входящих в спинной мозг. Тела псевдоуниполярных клеток формируют спинномозговой узел, после которого происходит соединение передних и задних корешков спинномозговых нервов. В общей сложности от спинного мозга посегмент-но отходит 31 пара корешков. Таким образом, часть спинного мозга, от которой отходит 4 корешка (2 задних, 2 передних) или 2 нерва, называется сегментом. У человека выделяют 31–33 сегмента: 8 из них – шейные (СI—СVIII), 12 грудных (ThI—ThXII), 5 поясничных (LI–LV), 5 крестцовых (SI—SV) и 1–3 копчиковых (СоI—СоIII).

Согласно метамерному строению спинного мозга, каждый сегмент отвечает за иннервацию определенного участка тела, находящегося с ним на определенном уровне.

Длина спинного мозга уступает длине позвоночного столба, поэтому расположение сегментов и соответствующих позвонков не совпадает. Верхние сегменты шейного отдела спинного мозга соответствуют нумерации позвонков. Нижние шейные и верхние сегменты грудного отдела уже не совпадают с номерами позвонков, располагаясь на один позвонок выше. В средней части грудного отдела это расхождение достигает двух, а в нижней части – трех. Поясничные сегменты смещены уже до уровня X–XI грудных позвонков. Крестцовые и копчиковые сегменты проецируются на тела XII грудного и I поясничного позвонков.


Внутреннее строение


На поперечном разрезе спинного мозга четко видна граница серого и белого вещества. Серое вещество расположено внутри и по форме напоминает букву «Н» (или расположено в виде бабочки). Белое находится снаружи от серого и образует канатики.

В середине серого вещества находится отверстие – центральный канал, выстланный эпендимоцитами макроглии и заполненный цереброспинальной жидкостью. Его верхняя часть переходит в IV желудочек продолговатого мозга, а книзу образует расширение и слепо заканчивается, формируя концевой желудочек. Вокруг канала расположено студенистое (серое) вещество. В различных участках на своем протяжении, а иногда даже полностью, канал может зарастать.

Серое вещество с обеих сторон образует серые столбы, связанные на уровне центрального канала передней и задней спайками, образованными пластинками серого вещества. В столбах в зависимости от уровня спинного мозга различают еще два или три столба: передний, задний, – а на уровне VIII шейного, грудных, I и II поясничного выделяют боковые столбы. Столбы серого вещества на поперечном срезе представлены в виде рогов. Передний рог шире заднего.

Серое вещество содержит скопления нейронов, образующих ядра. В передних рогах крупные эфферентные нейроны лежат в составе пяти ядер: центрального, переднелатерального, заднелате-рального, переднемедиального, заднемедиального. В задних рогах клетки по размеру мелкие. Также в их составе обнаруживаются отростки чувствительных псевдоуниполярных ганглиев. Серое вещество задних рогов имеет более сложную структуру, нежели в передних. Большая часть его нейронов участвует в формировании собственного ядра. В составе белого вещества, соприкасающегося с верхушкой рога, имеется участок, называемый пограничной зоной. В сером веществе возле этого участка выделяют губчатую зону, состоящую из крупнопетлистой глиальной сети и отдельных нейронов. Еще ближе к центральному каналу находится студенистое вещество (желатинозная субстанция), включающее мелкие нейроны. Отростки клеток студенистого вещества и губчатой зоны, а также пучковых клеток, распределенных в составе серого вещества, обеспечивают функцию связи между рядом расположенными сегментами сверху и снизу. Отростки обычно заканчиваются в передних рогах сегментов, огибая серое вещество по периферии и, таким образом, формируя вставки белого вещества. Эти волокна называют передними, латеральными и задними пучками.

Мелкоклеточные ядра задних рогов состоят большей частью из ассоциативных нейронов. Различают центральное и грудное ядра, аксоны которых следуют так же, как и пучки, в составе белого вещества в головной мозг.

Боковой рог в его медиальной части занимает грудное ядро, окруженное каемкой белого вещества. Оно продолжается вдоль бокового столба под названием столб Кларка. Кроме грудного ядра, в боковых рогах имеется также латеральное промежуточное (серое) вещество, включающее центры симпатической нервной системы. Аксоны клеток, образующих центры, переходят в передний рог и покидают спинной мозг в составе передних корешков вместе с аксонами и мотонейронами передних рогов. Между передними и задними рогами в промежуточной зоне располагается центральное промежуточное (серое) вещество. Отростки образующих его клеток входят в состав спиномозжечкового пути. В некоторых отделах спинного мозга (шейные и верхние грудные сегменты) в белом веществе имеется ретикулярная формация в виде перекладин из серого вещества, которое формируется из многоотростчатых нейронов.



скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

Поделиться ссылкой на выделенное