Алексей Молчанов.

Системное программное обеспечение. Лабораторный практикум

(страница 4 из 27)

скачать книгу бесплатно

   Алгоритмы поиска и размещения идентификаторов для двух данных методов организации таблиц были описаны выше в разделе «Краткие теоретические сведения», поэтому приводить их здесь повторно нет смысла. Они реализованы в виде четырех перечисленных выше функций (AddTreeVar и AddHashVar – для размещения элемента; GetTreeVar и GetHashVar – для поиска элемента). Функции поиска и размещения элементов в таблице в качестве результата возвращают ссылку на элемент таблицы (структура которого описана в модуле TblElem) в случае успешного выполнения и нулевую ссылку – в противном случае.
   Надо отметить, что функции размещения идентификатора в таблице организованы таким образом, что если на момент помещения нового идентификатора в таблице уже есть идентификатор с таким же именем, то функция не добавляет новый идентификатор в таблицу, а возвращает в качестве результата ссылку на ранее помещенный в таблицу идентификатор. Таким образом, в таблице не может быть двух и более идентификаторов с одинаковым именем. При этом наличие одинаковых идентификаторов во входном файле не воспринимается как ошибка – это допустимо, так как в задании не предусмотрено ограничение на наличие совпадающих имен идентификаторов.
   Все перечисленные функции описаны в двух программных модулях: FncHash – для таблицы идентификаторов, построенной на основе рехэширования с использованием генератора псевдослучайных чисел, и FncTree – для таблицы идентификаторов, построенной на основе комбинации хэш-адресации и бинарного дерева. Кроме массивов данных для организации таблиц идентификаторов и функций работы с ними эти модули содержат также описание переменных, используемых для подсчета количества выполненных операций сравнения при размещении и поиске идентификатора в таблицах.
   Полные тексты обоих модулей (FncHash и FncTree) можно найти на веб-сайте издательства, в файлах FncHash.pas и FncTree.pas. Кроме того, текст модуля FncTree приведен в листинге П3.2 в приложении 3.
   Хочется обратить внимание на то, что в разделах инициализации (initialization) обоих модулей вызывается функция начального заполнения таблицы идентификаторов, а в разделах завершения (finalization) обоих модулей – функция освобождения памяти. Это гарантирует корректную работу модулей при любом порядке вызова остальных функций, поскольку Object Pascal сам обеспечивает своевременный вызов программного кода в разделах инициализации и завершения модулей.


   Кроме перечисленных выше модулей необходим еще модуль, обеспечивающий интерфейс с пользователем. Этот модуль (FormLab1) реализует графическое окно TLab1Form на основе класса TForm библиотеки VCL. Он обеспечивает интерфейс средствами Graphical User Interface (GUI) в ОС типа Windows на основе стандартных органов управления из системных библиотек данной ОС. Кроме программного кода (файл FormLab1.pas) модуль включает в себя описание ресурсов пользовательского интерфейса (файл FormLab1.dfm).
Более подробно принципы организации пользовательского интерфейса на основе GUI и работа систем программирования с ресурсами интерфейса описаны в [3, 5, 6, 7].
   Кроме описания интерфейсной формы и ее органов управления модуль FormLab1 содержит три переменные (iCountNum, iCountHash, iCountTree), служащие для накопления статистических результатов по мере выполнения размещения и поиска идентификаторов в таблицах, а также функцию (procedure ViewStatistic) для отображения накопленной статистической информации на экране.
   Интерфейсная форма, описанная в модуле, содержит следующие основные органы управления:
   • поле ввода имени файла (EditFile), кнопка выбора имени файла из каталогов файловой системы (BtnFile), кнопка чтения файла (BtnLoad);
   • многострочное поле для отображения прочитанного файла (Listldents);
   • поле ввода имени искомого идентификатора (EditSearch);
   • кнопка для поиска введенного идентификатора (BtnSearch) – этой кнопкой однократно вызывается процедура поиска (procedure SearchStr);
   • кнопка автоматического поиска всех идентификаторов (BtnAllSearch) – этой кнопкой процедура поиска идентификатора (procedure SearchStr) вызывается циклически для всех считанных из файла идентификаторов (для всех, перечисленных в поле Listldents);
   • кнопка сброса накопленной статистической информации (BtnReset);
   • поля для отображения статистической информации;
   • кнопка завершения работы с программой (BtnExit).
   Внешний вид этой формы приведен на рис. 1.4.
   Рис. 1.4. Внешний вид интерфейсной формы для лабораторной работы № 1.

   Функция чтения содержимого файла с идентификаторами (procedure TLab1Form. BtnLoadClick) вызывается щелчком по кнопке BtnLoad. Она организована таким образом, что сначала содержимое файла читается в многострочное поле Listldents, а затем все прочитанные идентификаторы записываются в две таблицы идентификаторов. Каждая строка файла считается отдельным идентификатором, пробелы в начале и в конце строки игнорируются. При ошибке размещения идентификатора в одной из таблиц выдается предупреждающее сообщение (например, если будет считано более 223 различных идентификаторов, то рехэширование станет невозможным и будет выдано сообщение об ошибке).
   Функция поиска идентификатора (procedure TLab1Form.SearchStr) вызывается однократно щелчком по кнопке BtnSearch (процедура procedure TLab1Form.BtnSearchClick) или многократно щелчком по кнопке BtnAllSearch (процедура procedure TLab1Form. BtnAllSearchClick). Поиск идет сразу в двух таблицах, результаты поиска и накопленная статистическая информация отображаются в соответствующих полях.
   Полный текст программного кода модуля интерфейса с пользователем и описание ресурсов пользовательского интерфейса находятся в архиве, располагающемся на веб-сайте издательства, в файлах FormLab1.pas и FormLab1.dfm соответственно.
   Полный текст всех программных модулей, реализующих рассмотренный пример для лабораторной работы № 1, можно найти в архиве, располагающемся на вебсайте, в подкаталогах LABS и COMMON (в подкаталог COMMON вынесены те программные модули, исходный текст которых не зависит от входного языка и задания по лабораторной работе). Главным файлом проекта является файл LAB1.DPR в подкаталоге LABS. Кроме того, текст модуля FncTree приведен в листинге П3.1 в приложении 3.


   В результате выполнения написанного программного кода для ряда тестовых файлов было установлено, что при заполнении таблицы идентификаторов до 20 % (до 45 идентификаторов) для поиска и размещения идентификатора с использованием рехэширования на основе генератора псевдослучайных чисел в среднем требуется меньшее число сравнений, чем при использовании хэш-адресации в комбинации с бинарным деревом. При заполнении таблицы от 20 % до 40 % (примерно 45–90 идентификаторов) оба метода имеют примерно равные показатели, но при заполнении таблицы более, чем на 40 % (90-223 идентификаторов), эффективность комбинированного метода по сравнению с методом рехэширования резко возрастает. Если на входе имеется более 223 идентификаторов, рехэширование полностью перестает работать.
   Таким образом, установлено, что комбинированный метод работоспособен даже при наличии простейшей хэш-функции и дает неплохие результаты (в среднем 3–5 сравнений на входных файлах, содержащих 500–700 идентификаторов), в то время как метод на основе рехэширования для реальной работы требует более сложной хэш-функции с диапазоном значений в несколько тысяч или десятков тысяч.




   Цель работы: изучение основных понятий теории регулярных грамматик, ознакомление с назначением и принципами работы лексических анализаторов (сканеров), получение практических навыков построения сканера на примере заданного простейшего входного языка.


   Лексический анализатор (или сканер) – это часть компилятора, которая читает литеры программы на исходном языке и строит из них слова (лексемы) исходного языка. На вход лексического анализатора поступает текст исходной программы, а выходная информация передается для дальнейшей обработки компилятором на этапе синтаксического анализа и разбора.
   Лексема (лексическая единица языка) – это структурная единица языка, которая состоит из элементарных символов языка и не содержит в своем составе других структурных единиц языка. Лексемами языков программирования являются идентификаторы, константы, ключевые слова языка, знаки операций и т. п. Состав возможных лексем каждого конкретного языка программирования определяется синтаксисом этого языка.
   С теоретической точки зрения лексический анализатор не является обязательной, необходимой частью компилятора. Его функции могут выполняться на этапе синтаксического анализа. Однако существует несколько причин, исходя из которых в состав практически всех компиляторов включают лексический анализ. Это следующие причины:
   • упрощается работа с текстом исходной программы на этапе синтаксического разбора и сокращается объем обрабатываемой информации, так как лексический анализатор структурирует поступающий на вход исходный текст программы и удаляет всю незначащую информацию;
   • для выделения в тексте и разбора лексем возможно применять простую, эффективную и хорошо проработанную теоретически технику анализа, в то время как на этапе синтаксического анализа конструкций исходного языка используются достаточно сложные алгоритмы разбора;
   • лексический анализатор отделяет сложный по конструкции синтаксический анализатор от работы непосредственно с текстом исходной программы, структура которого может варьироваться в зависимости от версии входного языка – при такой конструкции компилятора при переходе от одной версии языка к другой достаточно только перестроить относительно простой лексический анализатор.
   Функции, выполняемые лексическим анализатором, и состав лексем, которые он выделяет в тексте исходной программы, могут меняться в зависимости от версии компилятора. В основном лексические анализаторы выполняют исключение из текста исходной программы комментариев и незначащих пробелов, а также выделение лексем следующих типов: идентификаторов, строковых, символьных и числовых констант, знаков операций, разделителей и ключевых (служебных) слов входного языка.
   В большинстве компиляторов лексический и синтаксический анализаторы – это взаимосвязанные части. Где провести границу между лексическим и синтаксическим анализом, какие конструкции анализировать сканером, а какие – синтаксическим распознавателем, решает разработчик компилятора. Как правило, любой анализ стремятся выполнить на этапе лексического разбора входной программы, если он может быть там выполнен. Возможности лексического анализатора ограничены по сравнению с синтаксическим анализатором, так как в его основе лежат более простые механизмы. Более подробно о роли лексического анализатора в компиляторе и о его взаимодействии с синтаксическим анализатором можно узнать в [1–4, 7].


   В простейшем случае фазы лексического и синтаксического анализа могут выполняться компилятором последовательно. Но для многих языков программирования информации на этапе лексического анализа может быть недостаточно для однозначного определения типа и границ очередной лексемы.
   Иллюстрацией такого случая может служить пример оператора программы на языке Фортран, когда по части текста DO 10 I=1… невозможно определить тип оператора (а соответственно, и границы лексем). В случае DO 10 I=1.15 это будет присвоение вещественной переменной DO10I значения константы 1.15 (пробелы в Фортране игнорируются), а в случае DO 10 I=1,15 это цикл с перечислением от 1 до 15 по целочисленной переменной I до метки 10.
   Другая иллюстрация из более современного языка программирования C++ – оператор присваивания k=i+++++j;, который имеет только одну верную интерпретацию (если операции разделить пробелами): k = i++ + ++j;.
   Если невозможно определить границы лексем, то лексический анализ исходного текста должен выполняться поэтапно. Тогда лексический и синтаксический анализаторы должны функционировать параллельно, поочередно обращаясь друг к другу. Лексический анализатор, найдя очередную лексему, передает ее синтаксическому анализатору, тот пытается выполнить анализ считанной части исходной программы и может либо запросить у лексического анализатора следующую лексему, либо потребовать от него вернуться на несколько шагов назад и попробовать выделить лексемы с другими границами. При этом он может сообщить информацию о том, какую лексему следует ожидать. Более подробно такая схема взаимодействия лексического и синтаксического анализаторов описана в [3, 7].
   Параллельная работа лексического и синтаксического анализаторов, очевидно, более сложна в реализации, чем их последовательное выполнение. Кроме того, такой подход требует больше вычислительных ресурсов и в общем случае большего времени на анализ исходной программы, так как допускает возврат назад и повторный анализ уже прочитанной части исходного кода. Тем не менее сложность синтаксиса некоторых языков программирования требует именно такого подхода – рассмотренный ранее пример программы на языке Фортран не может быть проанализирован иначе.
   Чтобы избежать параллельной работы лексического и синтаксического анализаторов, разработчики компиляторов и языков программирования часто идут на разумные ограничения синтаксиса входного языка. Например, для языка C++ принято соглашение, что при возникновении проблем с определением границ лексемы всегда выбирается лексема максимально возможной длины.
   В рассмотренном выше примере для оператора k=i+++++j; это приведет к тому, что при чтении четвертого знака + из двух вариантов лексем (+ – знак сложения в C++, а ++ – оператор инкремента) лексический анализатор выберет самую длинную – ++ (оператор инкремента) – и в целом весь оператор будет разобран как k = i++ ++ +j; (знаки операций разделены пробелами), что неверно, так как семантика языка C++ запрещает два оператора инкремента подряд. Конечно, неверный анализ операторов, аналогичных приведенному в примере (желающие могут убедиться в этом на любом доступном компиляторе языка C++), – незначительная плата за увеличение эффективности работы компилятора и не ограничивает возможности языка (тот же самый оператор может быть записан в виде k=i++ + ++j;, что исключит любые неоднозначности в его анализе). Однако таким же путем для языка Фортран пойти нельзя – разница между оператором присваивания и оператором цикла слишком велика, чтобы ею можно было пренебречь.
   В дальнейшем будем исходить из предположения, что все лексемы могут быть однозначно выделены сканером на этапе лексического анализа. Для всех современных языков программирования это действительно так, поскольку их синтаксис разрабатывался с учетом возможностей компиляторов.


   Результатом работы лексического анализатора является перечень всех найденных в тексте исходной программы лексем с учетом характеристик каждой лексемы. Этот перечень лексем можно представить в виде таблицы, называемой таблицей лексем. Каждой лексеме в таблице лексем соответствует некий уникальный условный код, зависящий от типа лексемы, и дополнительная служебная информация. Таблица лексем в каждой строке должна содержать информацию о виде лексемы, ее типе и, возможно, значении. Обычно структуры данных, служащие для организации такой таблицы, имеют два поля: первое – тип лексемы, второе – указатель на информацию о лексеме.
   Кроме того, информация о некоторых типах лексем, найденных в исходной программе, должна помещаться в таблицу идентификаторов (или в одну из таблиц идентификаторов, если компилятор предусматривает различные таблицы идентификаторов для различных типов лексем).

   Внимание!
   Не следует путать таблицу лексем и таблицу идентификаторов – это две принципиально разные таблицы, обрабатываемые лексическим анализатором.

   Таблица лексем фактически содержит весь текст исходной программы, обработанный лексическим анализатором. В нее входят все возможные типы лексем, кроме того, любая лексема может встречаться в ней любое количество раз. Таблица идентификаторов содержит только определенные типы лексем – идентификаторы и константы. В нее не попадают такие лексемы, как ключевые (служебные) слова входного языка, знаки операций и разделители. Кроме того, каждая лексема (идентификатор или константа) может встречаться в таблице идентификаторов только один раз. Также можно отметить, что лексемы в таблице лексем обязательно располагаются в том же порядке, что и в исходной программе (порядок лексем в ней не меняется), а в таблице идентификаторов лексемы располагаются в любом порядке так, чтобы обеспечить удобство поиска.
   В качестве примера можно рассмотреть некоторый фрагмент исходного кода на языке Object Pascal и соответствующую ему таблицу лексем, представленную в табл. 2.1:
    -------
| bookZ.ru collection
|-------
|  
 -------



    -------
| bookZ.ru collection
|-------
|  
 -------



    -------
| bookZ.ru collection
|-------
|  
 -------



    -------
| bookZ.ru collection
|-------
|  
 -------



    -------
| bookZ.ru collection
|-------
|  
 -------



 //-- Таблица 2.1. Лексемы фрагмента программы на языке Pascal --// 
   Поле «значение» в табл. 2.1 подразумевает некое кодовое значение, которое будет помещено в итоговую таблицу лексем в результате работы лексического анализатора. Конечно, значения, которые записаны в примере, являются условными. Конкретные коды выбираются разработчиками при реализации компилятора. Важно отметить также, что устанавливается связь таблицы лексем с таблицей идентификаторов (в примере это отражено некоторым индексом, следующим после идентификатора за знаком «:», а в реальном компиляторе определяется его реализацией).


   Лексический анализатор имеет дело с такими объектами, как различного рода константы и идентификаторы (к последним относятся и ключевые слова). Язык описания констант и идентификаторов в большинстве случаев является регулярным, то есть может быть описан с помощью регулярных грамматик [1–4, 7]. Распознавателями для регулярных языков являются конечные автоматы (КА). Существуют правила, с помощью которых для любой регулярной грамматики может быть построен КА, распознающий цепочки языка, заданного этой грамматикой.
   Более подробно о построении КА на основе грамматик для регулярных языков можно узнать в [3, 7, 26].
   Любой КА может быть задан с помощью пяти параметров: M(Q,Σ,δ,q -------
| bookZ.ru collection
|-------
|  
 -------


,F),
   где:
   Q – конечное множество состояний автомата;
   Σ – конечное множество допустимых входных символов (входной алфавит КА);
   δ – заданное отображение множества Q·Σ во множество подмножеств P(Q)δ: Q·Σ → P(Q) (иногда δ называют функцией переходов автомата);
   – начальное состояние автомата;
   – множество заключительных состояний автомата.

   Другим способом описания КА является граф переходов – графическое представление множества состояний и функции переходов КА. Граф переходов КА – это нагруженный однонаправленный граф, в котором вершины представляют состояния КА, дуги отображают переходы из одного состояния в другое, а символы нагрузки (пометки) дуг соответствуют функции перехода КА. Если функция перехода КА предусматривает переход из состояния q в q' по нескольким символам, то между ними строится одна дуга, которая помечается всеми символами, по которым происходит переход из q в q'.
   Недетерминированный КА неудобен для анализа цепочек, так как в нем могут встречаться состояния, допускающие неоднозначность, то есть такие, из которых выходит две или более дуги, помеченные одним и тем же символом. Очевидно, что программирование работы такого КА – нетривиальная задача. Для простого программирования функционирования КА M(Q,Σ,δ,q -------
| bookZ.ru collection
|-------
|  
 -------


,F) он должен быть детерминированным – в каждом из возможных состояний этого КА для любого входного символа функция перехода должна содержать не более одного состояния:
   Доказано, что любой недетерминированный КА может быть преобразован в детерминированный КА так, чтобы их языки совпадали [3, 7, 26] (говорят, что эти КА эквивалентны).
   Кроме преобразования в детерминированный КА любой КА может быть минимизирован – для него может быть построен эквивалентный ему детерминированный КА с минимально возможным количеством состояний. Алгоритмы преобразования КА в детерминированный КА и минимизации КА подробно описаны в [3, 7, 26].
   Можно написать функцию, отражающую функционирование любого детерминированного КА. Чтобы запрограммировать такую функцию, достаточно иметь переменную, которая бы отображала текущее состояние КА, а переходы из одного состояния в другое на основе символов входной цепочки могут быть построены с помощью операторов выбора. Работа функции должна продолжаться до тех пор, пока не будет достигнут конец входной цепочки. Для вычисления результата функции необходимо по ее завершении проанализировать состояние КА. Если это одно из конечных состояний, то функция выполнена успешно и входная цепочка принимается, если нет, то входная цепочка не принадлежит заданному языку.
   Однако в общем случае задача лексического анализатора шире, чем просто проверка цепочки символов лексемы на соответствие ее входному языку. Он должен правильно определить конец лексемы (об этом было сказано выше) и выполнить те или иные действия по запоминанию распознанной лексемы (занесение ее в таблицу лексем). Набор выполняемых действий определяется реализацией компилятора. Обычно эти действия выполняются сразу же при обнаружении конца распознаваемой лексемы.
   Во входном тексте лексемы не ограничены специальными символами. Определение границ лексем – это выделение тех строк в общем потоке входных символов, для которых надо выполнять распознавание. Если границы лексем всегда определяются (а выше было принято именно такое соглашение), то их можно определить по заданным терминальным символам и по символам начала следующей лексемы. Терминальные символы – это пробелы, знаки операций, символы комментариев, а также разделители (запятые, точки с запятой и др.). Набор таких терминальных символов может варьироваться в зависимости от входного языка. Важно отметить, что знаки операций сами также являются лексемами и необходимо не пропустить их при распознавании текста.
   Таким образом, алгоритм работы простейшего сканера можно описать так:
   • просматривается входной поток символов программы на исходном языке до обнаружения очередного символа, ограничивающего лексему;
   • для выбранной части входного потока выполняется функция распознавания лексемы;
   • при успешном распознавании информация о выделенной лексеме заносится в таблицу лексем, и алгоритм возвращается к первому этапу;


скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Поделиться ссылкой на выделенное