Александр Горкин.

Энциклопедия «Биология». Часть 2. М – Я (с иллюстрациями)

(страница 3 из 47)

скачать книгу бесплатно

   МЕДУНИ́ЦА, род многолетних трав сем. бурачниковых. Включает ок. 10 видов, произрастающих в умеренном поясе Евразии. В широколиственных лесах России растёт медуница неясная – один из самых ранних медоносов (отсюда название). Как только в лесу сойдёт снег, появляются её короткие стебельки с красивыми цветками. Бутоны и молодые цветки розовые, отцветающие – васильково-синие. Каждый цветок на протяжении своей жизни меняет окраску. Это объясняется содержанием в лепестках красящего вещества – антоциана, которое изменяет цвет как лакмусовая бумажка, в зависимости от кислотности. Пёстрое яркое соцветие привлекает шмелей и пчёл. К лету облик растения меняется, стебельки с плодами отмирают, но развиваются крупные прикорневые листья на длинных черешках. Они яйцевидные, с оттянутым острым концом, грубошероховатые. Некоторые виды медуницы – лекарственные растения (отхаркивающее и вяжущее средство), отдельные разводят как декоративные.

   МЕЖДОУ́ЗЛИЕ, часть стебля, заключённая между двумя соседними узлами. Удлиняются междоузлия за счёт особой образовательной ткани – вставочного камбия. У растений с укороченными междоузлиями (подорожник, одуванчик), у деревьев с укороченными побегами (берёза, яблоня) формируются листовые розетки. Самые длинные междоузлия – у лиан, могут измеряться метрами.

   МЕЖКЛЕ́ТНИКИ, пространства, возникающие в тканях растений при разъединении, разрушении или отмирании соседних клеток. Соединяясь друг с другом, межклетники образуют в растении систему полостей и ходов, сообщающихся с внешней средой (атмосферой) через устьица и другие отверстия в покровных тканях. Межклетники улучшают газовый обмен между клетками и окружающей средой, могут вмещать продукты выделительных тканей (смолы, эфирные масла, слизи и т.д.). У водных и болотных растений, у которых снабжение органов (особенно корней, корневищ) кислородом затруднено, по межклетникам к ним проходит воздух. Они также обеспечивают плавучесть водных растений.
   Ткань с развитой системой крупных межклетников, осуществляющая вентиляцию и газообмен, называется аэренхимой.

   МЕЗОДЕ́РМА, средний, или вторичный, зародышевый листок. Представляет собой слой клеток, образующийся у животных (кроме губок и кишечнополостных) между первичными зародышевыми листками (эктодермой и энтодермой) в процессе зародышевого развития. У разных групп организмов возникает различными способами независимо от первичных зародышевых листков или входит в состав одного из них и вычленяется позднее. Мезодерма даёт начало мышцам, скелету, органам сердечно-сосудистой и выделительной систем. Однако следует учитывать, что в современной эмбриологии специализация зародышевых листков (как мест, где закладываются определённые органы) не считается жёсткой, т.к. границы между ними условны, а зародышевые клетки обладают потенциальными возможностями дифференцироваться в различных направлениях.

   МЕЗОЗО́ЙСКАЯ Э́РА (мезозой), средняя эра фанерозоя.
Включает триасовый, юрский и меловой периоды. Длилась ок. 185 млн. лет. Началась 248 млн. лет назад, завершилась 65 млн. лет назад. В мезозое единые огромные континенты Гондвана и Лавразия начали раскалываться на отдельные массивы суши. К концу мезозоя образовавшиеся континенты имели очертания, сходные с современными. Их окружали обширные мелководные моря. Климат менялся от засушливого в центре континентов до влажного по их окраинам, но повсюду был тёплым на протяжении почти всего мезозоя (похолодание наступило в конце мелового периода). В эту эру произошли две крупные смены растительности. В триасе древняя спороносная флора сменилась господством голосеменных и продвинутых папоротниковых. В меловом периоде появились цветковые растения, которые к концу этого периода стали практиче-ски преобладать на Земле. Большие изменения произошли у наземных и морских животных. В начале эры окончательно исчезли многие примитивные группы земноводных и пресмыкающихся, но прогрессивные лабиринтодонты и некоторые группы зверообразных пресмыкающихся продолжали благоденствовать ещё долгое время. В раннем триасе появились ихтиозавры. В среднем или позднем триасе возникло много новых групп позвоночных: бесхвостые амфибии, млекопитающие, динозавры, крокодилы, черепахи, птерозавры и, скорее всего, птицы. Особенно большого эволюционного успеха достигли динозавры, морские рептилии и птерозавры. Однако к концу мелового периода все они вымерли. Бесследно исчезли также появившиеся в мезозое морские шестилучевые кораллы, новые аммониты, планктонные фораминиферы, рудисты, правильные морские ежи, возникли диатомовые водоросли.

   МЕЗОТРО́ФЫ, растения, умеренно требовательные к содержанию зольных элементов в почве (напр., бук, дуб, любка).

   МЕЗОФИ́ТЫ, растения, обитающие в условиях достаточного, но не избыточного увлажнения; промежуточная группа между ксерофитами и гигрофитами. Легко подвержены завяданию. Условия жизни мезофитов достаточно благоприятны для роста, поэтому они имеют хорошо развитую корневую систему, относительно большую поверхность листьев. К мезофитам относится большинство растений средней полосы: луговые злаки и бобовые, почти все плодовые культуры, многие овощные растения.

   МЕЙО́З (деления созревания, период созревания), этап в образовании половых клеток; состоит из двух последовательных делений исходной диплоидной клетки (содержат два набора хромосом – 2n) и формирования четырёх гаплоидных половых клеток, или гамет (содержат по одному набору хромосом – n). Уменьшение (редукция) числа хромосом (2nn) происходит за счёт того, что на два деления приходится лишь одно удвоение (репликация) хромосомного материала. При оплодотворении гаплоидные гаметы – яйцеклетка и сперматозоид – сливаются и диплоидное число хромосом, характерное для каждого вида, восстанавливается (n + n2n).
   В главных чертах мейоз протекает сходно у разных групп организмов и у особей женского и мужского пола. Два следующих друг за другом деления первичной половой клетки обозначаются как мейоз I и мейоз II. Подобно делению соматических клеток —митозу, и мейоз I, и мейоз II состоят из четырёх основных стадий – профазы, метафазы, анафазы и телофазы. Вступающая в мейоз клетка диплоидна, а каждая хромосома содержит удвоенное количество ДНК. В первом мейотическом делении особенно сложна и длительна профаза I (у человека она занимает 22,5 сут). На этой стадии гомологичные хромосомы соединяются (конъюгируют) в пары – биваленты. В каждой хромосоме бивалента различимы в микроскопе две продольные половины – хроматиды, т.е. бивалент представляет собой четвёрку (тетраду) хроматид. В профазе I происходит генетически значимое событие – обмен гомологичными (содержащими одни и те же гены) участками несестринских хроматид, или кроссинговер. В анафазе I биваленты разъединяются и гомологичные хромосомы расходятся к противоположным полюсам клетки, причем, в отличие от анафазы митоза, каждая хромосома сохраняет две хроматиды. В результате число хромосом уменьшилось вдвое, но удвоенным остаётся и количество ДНК, представленное двумя хроматидами. Важная особенность расхождения хромосом заключается в том, что любая, отцовская или материнская, хромосома из гомологичной пары может отойти к любому из полюсов независимо от того, как расходятся хромосомы других пар. Это означает, что число возможных сочетаний хромосом в дочерних клетках обычно очень велико: 2n, где n – число хромосомных пар (у человека – 223). Так происходит ещё одно перемешивание родительского генетического материала – рекомбинация хромосом.
   После мейоза I обычно сразу или после короткой интерфазы, во время которой удвоение хромосом не происходит, следует мейоз II. Это деление аналогично митозу с той разницей, что делятся гаплоидные клетки. В анафа-зе II сестринские хроматиды разделяются и, став хромосомами, расходятся к полюсам. Число хромосом и количество ДНК приходят в соответствие, и мейоз II завершается образованием четырёх гаплоидных гамет, каждая из которых несёт уникальный генетический материал. У самок, однако, лишь одна из четырёх гамет – яйцеклетка, способная к оплодотворению.
   Мейоз – один из ключевых биологических процессов. Его значение состоит в поддержании в поколениях постоянства хромосомных наборов (кариотипов), т.е. в обеспечении наследственности, и в создании новых сочетаний отцовских и материнских генов, т.е. в обеспечении генотипической изменчивости.
   Поведение хромосом в мейозе сопоставимо с поведением наследственных факторов (генов) в открытых Г. Менделем закономерностях наследования. Обнаружение этого параллелизма дало толчок к созданию хромосомной теории наследственности.

   МЕЛАНИ́ЗМ, появление большого количества тёмного пигмента меланина в тканях животного либо увеличение числа темноокрашенных особей в популяции. Меланизм имеет генетическую природу и закрепляется отбором при преобладании в популяции тёмных форм.

   МЕЛИ́ССА ЛЕКА́РСТВЕННАЯ, вид растений сем. губоцветных. Многолетник, распространённый в Центральной Европе и Средиземноморье, широко культивируется и иногда дичает. Стебли выс. до 1 м несут супротивные яйцевидные листья и мелкие белые или бледно-лиловые двугубые цветки, собранные в небольшие пазушные соцветия – кисти. Всё растение содержит эфирное масло с запахом лимона. Листья используют как пищевую пряность. Настой обладает успокаивающим и спазмолитиче-ским действием.

   МЕЛОВО́Й ПЕРИ́ОД (мел), последний и наиболее продолжительный период мезозойской эры. Длился ок. 80 млн. лет. Начался 144 млн. лет назад, завершился 65 млн. лет назад. В начале этого периода происходило разделение суши на современные материки. Океан отступал, площадь суши увеличивалась, но затем произошла одна из самых больших трансгрессий (наступаний) океана в истории Земли. В это время во многих регионах мира накопились огромные толщи писчего мела, состоящего преимущественно из микроскопических морских одноклеточных. В самом конце мелового периода моря опять отступили, оформились континенты, занявшие почти современное положение на земном шаре, климат в центре континентов стал более сухим и одновременно наступило похолодание. На западе Северной и Южной Америки и на юге Азии продолжался рост высоких гор. В середине мела начался расцвет покрытосеменных (цветковых) растений, а в конце его они стали преобладать во флоре Земли, в то время как ряд крупных групп голосеменных вымерли. Существенно увеличилось разнообразие насекомых. Пресмыкающиеся продолжали царствовать на суше и в море. Самого большого разнообразия за свою историю достигли хищные тероподные динозавры. Повсеместно, кроме Южной Америки, пришли в упадок гигантские завроподы, но стали процветать другие растительноядные – птицетазовые динозавры и рогатые динозавры в Северной Америке. В морях и океанах продолжали царить хищные плиозавры, плезиозавры, ихтиозавры, а в позднем мелу широко распространились мозазавры. В воздухе господствовали птеродактили, среди них появились самые крупные за всю историю этой группы формы – с размахом крыльев более 10 м. Среди пернатых преобладали примитивные энанциорнисовые птицы, хотя настоящие веерохвостые птицы появились уже в раннем мелу. В морях обитали разнообразные ныряющие бескрылые гесперорнисы (зубастые птицы), а также летающие ихтиорнисы (морские веерохвостые птицы) неясных родственных связей. В меловой период существовали в основном мелкие формы различных примитивных млекопитающих, но уже в конце раннего мела появились насекомоядные из высших плацентарных. В конце мела произошло одно из крупнейших вымираний в истории Земли, вызванное, скорее всего, глобальными факторами абиотического характера. Оно коснулось наземных динозавров и летающих ящеров, а также большинства обитателей морей (пресмыкающихся, планктонных фораминифер, головоногих моллюсков, многих двустворчатых моллюсков и брахиопод, различных групп морских водорослей).

   МЕ́НДЕЛЬ (Mendel) Грегор Иоганн (1822—1884), австрийский селекционер, монах, настоятель монастыря в Брюнне (ныне Брно, Чехия), основатель учения о наследственности, положившего начало генетике. В 1856—1863 гг. Мендель, интересовавшийся распределением родительских признаков у потомков растительных организмов, провёл в монастырском саду обширную серию опытов по скрещиванию сортов гороха (в общей сложности получил более 10 тыс. гибридов). Благодаря строго продуманному и тщательному проведению экспериментов, удачному выбору объекта и анализируемых признаков (чётких, хорошо различимых) и математической обработке полученных данных Менделю удалось сформулировать ряд закономерностей в передаче и распределении наследственных факторов и соответствующих им признаков (см. Менделя законы). Результаты своих опытов Мендель сообщил на заседании общества естествоиспытателей, после чего опубликовал ставшую впоследствии знаменитой статью «Опыты над растительными гибридами» (1866). Разработанные Менделем методы гибридологического анализа позволили ему впервые доказать существование материальных наследственных единиц (генов).
   Работа Менделя, не понятая современниками, была забыта и лишь в 1900 г. заново обнаружена и подтверждена другими учёными, пришедшими (независимо друг от друга) к таким же выводам. Учение Менделя стало известно как менделизм.

   МЕ́НДЕЛЯ ЗАКО́НЫ, основные закономерности наследования, открытые Г. Менделем. В 1856—1863 гг. Мендель провёл обширные, тщательно спланированные опыты по гибридизации растений гороха. Для скрещиваний он отбирал константные сорта (чистые линии), каждый из которых при самоопылении устойчиво воспроизводил в поколениях одни и те же признаки. Сорта различались альтернативными (взаимоисключающими) вариантами какого-либо признака, контролируемого парой аллельных генов (аллелей). Напр., окраской (жёлтая или зелёная) и формой (гладкая или морщинистая) семян, длиной стебля (длинный или короткий) и т.д. Для анализа результатов скрещиваний Мендель применил математические методы, что позволило ему обнаружить ряд закономерностей в распределении родительских признаков у потомков. Традиционно в генетике принимают три закона Менделя, хотя сам он формулировал лишь закон независимого комбинирования. Первый закон, или закон единообразия гибридов первого поколения, утверждает, что при скрещивании организмов, различающихся аллельными признаками, в первом поколении гибридов проявляется лишь один из них – доминантный, а альтернативный ему, рецессивный, остаётся скрытым (см. Доминантность, Рецессивность). Напр., при скрещивании гомозиготных (чистых) сортов гороха с жёлтой и зелёной окраской семян у всех гибридов первого поколения окраска была жёлтой. Значит, жёлтая окраска – доминантный признак, а зелёная – рецессивный. Первоначально этот закон называли законом доминирования. Вскоре было обнаружено его нарушение – промежуточное проявление обоих признаков, или неполное доминирование, при котором, однако, сохраняется единообразие гибридов. Поэтому современное название закона более точное.
   Второй закон, или закон расщепления, гласит, что при скрещивании между собой двух гибридов первого поколения (или при их самоопылении) во втором поколении проявляются в определённом соотношении оба признака исходных родительских форм. В случае жёлтой и зелёной окраски семян их соотношение было 3:1, т. е. расщепление по фенотипу происходит так, что у 75% растений окраска семян доминантная жёлтая, у 25% – рецессивная зелёная. В основе такого расщепления лежит образование гетерозиготными гибридами первого поколения в равном отношении гаплоидных гамет с доминантными и рецессивными аллелями. При слиянии гамет у гибридов 2-го поколения образуется 4 генотипа – два гомозиготных, несущих только доминантные и только рецессивные аллели, и два гетерозиготных, как у гибридов 1-го поколения. Поэтому расщепление по генотипу 1:2:1 даёт расщепление по фенотипу 3:1 (жёлтую окраску обеспечивает одна доминантная гомозигота и две гетерозиготы, зелёную – одна рецессивная гомозигота).
   Третий закон, или закон независимого комбинирования, утверждает, что при скрещивании гомозиготных особей, отличающихся по двум и более парам альтернативных признаков, каждая из таких пар (и пар аллельных генов) ведёт себя независимо от других пар, т. е. и гены, и соответствующие им признаки наследуются в потомстве независимо и свободно комбинируются во всех возможных сочетаниях. Он основан на законе расщепления и выполняется в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.
   Часто как один из законов Менделя приводится и закон чистоты гамет, утверждающий, что в каждую половую клетку попадает только один аллельный ген. Но этот закон был сформулирован не Менделем.
   Непонятый современниками, Мендель обнаружил дискретную («корпускулярную») природу наследственности и показал ошибочность представлений о «слитной» наследственности. После переоткрытия забытых законов основанное на экспериментах учение Менделя получило название менделизм. Его справедливость была подтверждена хромосомной теорией наследственности.

   МЕНСТРУА́ЛЬНЫЙ ЦИКЛ, периодически возникающие физиологические изменения в женском организме, повторяющиеся через определённые периоды, внешним проявлением которых являются кровянистые выделения из половых путей (менструация). В течение менструального цикла под воздействием гипоталамуса и гипофиза в матке и яичниках происходят одновременные изменения. Начало очередного менструального цикла характеризуется восстановлением эндометрия, выстилающего полость матки, который в предыдущем цикле выделился из неё в виде кровянистой жидкости. В этот период в яичниках начинается рост и созревание фолликула. На 14—15-й день менструального цикла происходит овуляция с образованием на месте лопнувшего фолликула жёлтого тела. С наступлением беременности менструальный цикл прекращается. Если зачатия не происходит, то во 2-й пол. цикла жёлтое тело атрофируется, а эндометрий матки начинает отторгаться и на 24—28-й день выходит из половых путей. Первая менструация наступает при половом созревании (в 12—14 лет). Временное прекращение менструаций происходит во время беременности и кормления ребёнка грудным молоком, а полное – с наступлением климактерического периода, когда угасает функция яичников.

   МЕРИСТЕ́МЫ, то же, что образовательные ткани.

   МЕСТООБИТА́НИЕ, участок суши или водоёма, занятый частью популяций особей одного вида или видом и обладающий необходимыми для их существования экологическими условиями. Разнообразие местообитаний характеризует экологическую пластичность организмов: те из них, которые способны существовать в различных местообитаниях, обычно имеют и более широкий географический ареал.

   МЕТАБОЛИ́ЗМ, то же, что обмен веществ.

   МЕТАМОРФО́З у животных, преобразование организма, в результате которого происходит превращение личинки во взрослую особь. Развитие с метаморфозом наблюдается у большинства беспозвоночных животных, а также у некоторых позвоночных: миног, ряда рыб и земноводных. Метаморфоз обычно сопровождается резкой сменой условий существования. При этом личинка сильно отличается от следующей за ней взрослой стадии и во время метаморфоза происходит подготовка её к взрослой форме, к жизни в новом местообитании. Эта подготовка сопровождается глубокой перестройкой личиночного организма, в нём происходят структурные и функциональные изменения, в результате чего взрослый организм отличается способом передвижения, особенностями поведения и питания. Процесс метаморфоза у животных регулируется и контролируется гормонами.
   Метаморфоз насекомых бывает двух типов – с неполным превращением и с полным превращением. Неполный метаморфоз свойствен тараканам, саранчовым, клопам. У этих насекомых из яйца выходит личинка, похожая на взрослое насекомое (нимфа) и после каждой линьки происходит постепенный рост имеющихся крыльев и органов размножения. У стрекоз и подёнок личинки живут в водной среде, дышат жабрами и лишены крыльев. При метаморфозе они превращаются в крылатых насекомых, дышащих с помощью дыхалец.
   У бабочек, жуков, комаров, пчёл, мух и др. развитие протекает с полным метаморфозом, когда питание осуществляется на стадии личинки, а расселение и размножение – на взрослой стадии. При этом в ходе превращений происходит последовательная смена не похожих друг на друга форм: из яйца вылупляется червеобразная личинка, которая после нескольких линек превращается в малоподвижную куколку, а из куколки выходит крылатое взрослое насекомое с тремя парами конечностей.
   У двоякодышащих рыб личинка, имеющая наружные жабры, превращается во взрослую особь с жабрами, лежащими в полости тела, а также имеющую лёгкое.
   У земноводных похожий на малька рыб головастик, обитающий в воде, превращается в лягушонка с лёгкими, конечностями, костными зубами, который выходит на сушу.

   МЕХАНИ́ЧЕСКИЕ ТКА́НИ, опорные ткани растений. Обеспечивают прочность и устойчивость растений при действии силы тяжести, порывах ветра и др. нагрузках. У небольших или водных растений форма поддерживается за счёт тонких клеточных оболочек, т.к. нагрузки невелики. Крупные наземные растения обладают опорной системой, образованной колленхимой и склеренхимой – тканями, выполняющими в теле растения роль арматуры или каркаса. Колленхима состоит из вытянутых в длину живых клеток с неравномерно утолщёнными оболочками. Эта ткань возникает в молодых, растущих стеблях и листьях и поэтому способна к растяжению. Клетки склеренхимы покрыты равномерно утолщёнными одревесневшими оболочками. После их формирования содержимое клеток (протопласт) отмирает. Сильно вытянутые клетки склеренхимы образуют волокна, придающие прочность древесине (ксилеме) и лубу (флоэме). Прочность оболочек склеренхимных клеток близка к прочности стали. В целом способность растений выдерживать огромные нагрузки и сохранять свою форму объясняется, как установили учёные, чрезвычайно эффективным (с точки зрения теории сопротивления материалов) распределением элементов механических тканей в стеблях (стволах), корнях и др. органах.

   МЕЧЕНО́СЦЫ, род рыб сем. пецилиевых. Более 15 видов, распространены в водах южной части Северной Америки. Населяют водоёмы со стоячей и медленно текущей водой, густо заросшие растениями. Характерная особенность меченосцев – удлинённая нижняя часть хвостового плавника, т.н. меч (у самок отсутствует). Дл. самцов до 8 см (без меча), самок – до 12 см. Многие виды – объекты аквариумного рыбоводства. В аквариумах встречается множество форм, с различной окраской тела и плавников, с различной длиной меча. От исходных видов – зе-лёного меченосца Геллера (его окраска в природе очень вapьирует) и пятнистой плятипецилии, или меченосца, аквариумистами выведены формы различной окраски (лимонные, красные, рубиновые, чёрные, тигровые, пёстрые), с удлинённым спинным плавником в виде ленты или паруса, с лировидным или вилочным хвостовым плавником, с сочетанием этих признаков и др.
   Меченосцы – активные стайные, с выраженной иерархией, всеядные рыбки. Аквариум, предназначенный для них, должен быть не менее 50 л. При совместном содержании с другими рыбами следует иметь в виду, что меченосцы могут обрывать плавники у медлительных рыб, а доминирующие особи отгоняют от корма более слабых. Половозрелыми рыбки становятся в возрасте ок. 6 мес. (в зависимости от гибридной группы и условий содержания). Продуктивность 30—200 и более мальков. Меченосцы поедают своё потомство, поэтому аквариумисты часто используют специальные отсадники для самок и засаживают аквариумы мелколистными и плавающими растениями.
   МЕЧЕХВО́СТЫ, класс морских членистоногих. Это древнейшие беспозвоночные, 5 видов которых сохранились до настоящего времени. Тело уплощённое, дл. 50– 90 см, покрыто мощным щитом и заканчивается длинным шипом (отсюда название). Живут мечехвосты у берегов Северной Америки и Юго-Восточной Азии и прилегающих островов. Откладывать яйца выходят на берег, во время отлива. Питаются бентосом и водорослями.

   МЕ́ЧНИКОВ Илья Ильич (1845—1916), российский биолог и патолог, автор фагоцитарной теории иммунитета, теории происхождения многоклеточных организмов. Основоположник (совместно с А.О. Ковалевским) эволюционной сравнительной эмбриологии, один из основоположников отечественной микробиологии. Соз-дал теорию зародышевых листков (1871). Совместно с Н.Ф. Гамалеей основал первую в России бактериологическую станцию (1886). Занимался также проблемами старения. Нобелевская премия по физиологии и медицине (1908, совместно с П. Эрлихом).


скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Поделиться ссылкой на выделенное