Михаил Ахманов.

Вода, которую мы пьем

(страница 2 из 10)

скачать книгу бесплатно

   Как мы знаем, все тела состоят из атомов и молекул. Атомы, мельчайшие компоненты вещества, обладают ядром, окруженным электронными оболочками. Ядро мы будем представлять в виде сферы, состоящей из тяжелых элементарных частиц: положительно заряженных протонов и нейтральных нейтронов. Суммарный заряд протонов (т. е. заряд ядра) определяет конкретный элемент: ядро с одним протоном – водород, с двумя – гелий, с тремя – литий, с двадцатью шестью – железо, с девяносто двумя – уран. Нейтронов в ядре обычно больше, чем протонов: у урана – 146 нейтронов, у железа – 30, у лития – 4 и т. д. Исключения – самые легкие элементы – водород и гелий: у гелия два протона и два нейтрона, а ядро водорода в большинстве случаев – это один-единственный протон. Однако количество нейтронов в ядре может колебаться, и по этой причине каждый элемент известен нам в виде нескольких изотопов, стабильных или нестабильных, то есть склонных к радиоактивному распаду. Выше были перечислены стабильные изотопы водорода, гелия и других элементов – их в земной коре и водах подавляющее большинство. Но есть и другие изотопы, например у водорода: дейтерий D – в ядре протон и нейтрон, тритий T – в ядре протон и два нейтрона.
   Атомное ядро окружают легкие элементарные частицы, отрицательно заряженные электроны; в первом приближении можно считать, что они вращаются вокруг ядра по близким и более удаленным орбитам, подобно тому, как планеты вращаются вокруг Солнца. Заряд электрона отрицательный и равный по абсолютной величине заряду протона; электронов в атоме столько же, сколько протонов, и поэтому атом в целом электронейтрален. На сегодняшний день нам известно чуть более сотни различных элементов, от водорода до радиоактивных менделевия, нобелия и лоуренсия, и все они представлены в Периодической таблице.
   Эту таблицу можно уподобить алфавиту, а атомы – буквам, из которых составляются слова-молекулы. Можно сказать, что совокупность слов – это человеческий язык, а совокупность различных молекул (то есть различных веществ) – это язык природы. В природе вещества редко присутствуют в своем атомарном состоянии, в виде атомарного водорода, кислорода или железа; в большинстве случаев они объединяются в молекулы или кристаллы, образуя газы, жидкости и твердые тела. Так, два атома водорода объединяются в молекулу H₂ (газ водород), два атома кислорода – в молекулу О2 (газ кислород). Наконец, два атома водорода соединяются с одним атомом кислорода и образуют жидкость H₂O – воду.
   В чем причина этой необоримой тяги атомов к слиянию в молекулы? Всем нам известен закон сохранения энергии, из которого следует, что энергия не создается и не уничтожается, а только переходит из одного состояния в другое. Это – главный физический закон. Второй по значимости, пожалуй, принцип минимума энергии, согласно которому всякое вещество строится так, и всякий процесс осуществляется таким образом, чтобы при этом была затрачена минимальная энергия.
Молекула H₂ имеет меньшую энергию, чем два свободных атома водорода, молекула H₂O – меньшую, чем два атома водорода и один атом кислорода. Отсюда многообразие веществ в окружающем нас мире. Иными словами, есть фундаментальный закон, повинуясь которому атомы-буквы складываются в молекулы-слова.
   Связь атомов в молекуле осуществляют электроны внешней (валентной) оболочки. Виды этих связей весьма разнообразны, но основные таковы: ионная и ковалентная. В случае ионной связи один атом отдает электроны, а другой их присоединяет, и в результате образуются два иона, положительный и отрицательный. Например, поваренная соль NaCl: натрий отдает один электрон, хлор его присоединяет, и это обозначается как Na -------
| bookZ.ru collection
|-------
|  
 -------


и Cl -------
| bookZ.ru collection
|-------
|  
 -------


. Значит, ион – это атом, у которого один или несколько (обычно до четырех) электронов отняты или присоединены, в результате чего он превратился в частицу с положительным (катион) или отрицательным (анион) зарядом. В первом приближении можно считать, что молекула или кристалл с ионной связью цементируются электрическими силами – притяжением разноименно заряженных ионов (анионов и катионов) друг к другу и отталкиванием их электронных оболочек.
   В случае ковалентной связи, которая реализуется, например, в молекулах H₀ и O₂, внешние электроны как бы обобществляются, кружась по орбитам, которые «обтекают» оба (или большее число) составляющих молекулу атома. Существуют промежуточные типы связей между ковалентной и ионной, а кроме того, оба типа связи могут иметь место в одной молекуле. Вспомним о серной кислоте H₂SO₄: сера связана с четырьмя атомами кислорода ковалентно, и этот блок (кислотный остаток, ион SO -------
| bookZ.ru collection
|-------
|  
 -------


 -------
| bookZ.ru collection
|-------
|  
 -------


) соединен с двумя атомами водорода ионными связями.
   В завершение этого раздела напомню о предметах неорганической и органической химии. К неорганике, в интересующем нас аспекте, относятся металлы и сплавы, стекла, керамика, газы и все минералы, которых на сегодняшний день известно около пяти тысяч (включая доставленные с Луны); всего же неорганических соединений тысяч сорок-пятьдесят или более того, по разным оценкам.
   Органическая химия – это, по сути дела, химия соединений углерода, способного образовывать кольца и цепочки их атомов. Благодаря этой способности соединений на основе углерода великое множество, в десять или двадцать раз больше, чем неорганических. Молекулы соединений углерода, в свою очередь, могут состоять из сотен, тысяч и десятков тысяч атомов, что вовсе не удивительно: ведь углеродные соединения – основа жизни! К ним относятся дерево, бумага, ткани, пластики, нефть, компоненты питания (белки, жиры, сахара-углеводы и витамины), молекулы ДНК. Весь растительный и животный мир в своей основе имеет углеродные соединения. Потенциально опасными для нас являются любые пластики, в том числе искусственные полимерные материалы (полиэтилен, полихлорвинил, полистирол, полиуретан и т. д.) – высокомолекулярные соединения, которые в процессе старения распадаются на токсичные блоки-мономеры, среди которых могут оказаться фенол и его производные, формальдегид и даже цианиды.
   Насколько опасными являются для нас полимеры, покажет следующий пример. Возьмем механический фильтр, который представляет собой в первом приближении мелкоячеистую сетку, или множество таких сеток, или некий материал с очень маленькими порами в 1 мкм (такие материалы уже существуют). Есть надежда, что данный фильтр задержит не только взвешенные частицы (то есть попросту грязь), но через него не пройдут бактерии и крупные вирусы, размеры которых 1 мкм и более; если же в будущем удастся уменьшить поры до 0,1 мкм, то мелкие вирусы (0,2–1 мкм) тоже не проскользнут. А полимеры? Ведь длина полимерной цепочки (то есть линейный размер молекулы) достигает 0,1–0,8 мкм, что сравнимо с величиной вируса! Неужели наш чудо-фильтр задержит и эти гигантские молекулы? Не тут-то было! Полимер, как отмечено выше, стареет и распадается на мономеры, величина которых гораздо меньше, а токсичность и реакционная способность гораздо больше. С помощью механического фильтра от них не избавишься, нужны другие методы.


   Обратимся теперь к свойствам воды и рассмотрим ее с точки зрения основных наук – физики, химии и др.
   Молекула воды H₂O имеет форму тупоугольного треугольника (рис. 1), с углом между двумя связями кислород-водород примерно 104°. Электроны водородных атомов оттянуты к кислороду, так что «водородные углы» треугольника несут избыток положительного заряда, а «кислородный угол» – отрицательного. В результате «водородные углы» одной молекулы взаимодействуют с «кислородными углами» других молекул, и такая химическая связь (она называется водородной) объединяет молекулы воды в своеобразный пространственный полимер. Иными словами, хотя вода – жидкость, ее молекулы находятся не в хаотическом состоянии, а образуют некое подобие правильной структуры (что, вообще говоря, свойственно лишь кристаллам).
   Рис. 1. Молекула воды

   Благодаря этой особенности вода имеет высокую теплоемкость, то есть способна поглощать большие количества тепла (в первую очередь солнечной энергии) и оставаться при этом жидкостью. А это с точки зрения географии, геологии и метеорологии означает, что вода является главным климатообразующим фактором на нашей планете. Ранее уже говорилось о круговороте воды в природе. К этому нужно добавить следующее: воды океанов, морей, рек и озер являются гигантскими аккумуляторами тепла, причем в некоторых случаях это тепло доставляется из тропических областей в умеренные зоны очень быстро и эффективно. Вспомним Гольфстрим, «отопительную печь» Западной Европы, климат которой, на тех же широтах, гораздо мягче российского.
   Коснусь еще нескольких общеизвестных, но очень важных свойств воды. Как упоминалось выше, существует три изотопа водорода: водород H (или протий), устойчивый дейтерий D и радиоактивный тритий T. Кроме того, в природе существует три изотопа кислорода. В результате различных комбинаций изотопов водорода с изотопами кислорода можно получить 42 различных вида воды. Наиболее знакомые нам – обычная вода H₂O и так называемые тяжелая (дейтериевая) D₂O и сверхтяжелая (тритиевая) T₂O вода. На Земле тритий присутствует в ничтожно малых количествах, а вот дейтерия довольно много – один атом D на 6700 атомов H, и это означает, что тяжелой воды в обычной весьма заметное количество – 150–160 г/т. С этим наш организм еще справляется, но вообще тяжелая вода для нас не слишком полезна.
   Свойства воды как универсального растворителя определяются ее большой диэлектрической проницаемостью (для воздуха – 1, для воды – 80). Это означает, что разноименные электрические заряды притягиваются друг к другу в воде в восемьдесят раз слабее, чем в воздухе, и, соответственно, во столько же раз ослабевают силы межатомного сцепления в молекулах и твердых телах (вспомните про ионную связь!). Молекулы и кристаллы распадаются на ионы. Данное явление, называемое диссоциацией, можно описать иначе. Представьте картинку из школьного учебника химии (рис. 2), где молекулы воды изображены в виде маленьких огурцов-диполей, [6 - Диполь – линейный объект, несущий на одном конце положительный заряд, на другом – отрицательный.] молекула инородного вещества – в виде огурца-диполя побольше, причем диполи воды развернуты положительными концами к отрицательному концу инородной молекулы и отрицательными концами к ее положительному концу. Таким образом, диполи воды как бы разрывают электрическими силами ионную связь в молекуле вещества, превращая его в ионы. В результате кристалл поваренной соли NaCl растворяется, диссоциирует и присутствует в воде в виде ионов Na -------
| bookZ.ru collection
|-------
|  
 -------


и Cl -------
| bookZ.ru collection
|-------
|  
 -------


, а серная кислота H₂SO₄ распадается на катион водорода H -------
| bookZ.ru collection
|-------
|  
 -------


и анион кислотного остатка SO -------
| bookZ.ru collection
|-------
|  
 -------


 -------
| bookZ.ru collection
|-------
|  
 -------


. Молекулы воды тоже диссоциируют на ионы H -------
| bookZ.ru collection
|-------
|  
 -------


и OH -------
| bookZ.ru collection
|-------
|  
 -------


, но в очень слабой степени.
   Почему нам так важно разобраться с описанным выше явлением и запомнить, что множество веществ, растворяясь в воде, преобразуются в ионы? Потому, что способность ионов вступать в химические и биохимические реакции гораздо выше, чем у молекул. Молекулы электронейтральны, а ионы несут положительный или отрицательный заряд. Отличаясь большой активностью, они не упустят возможности отдать лишний или присоединить недостающий электрон. Вода является изолятором, но раствор соли или кислоты в воде – это электролит, который отлично проводит электрический ток. В этом легко убедиться, опустив в раствор электроды и подав на них напряжение. Наша питьевая вода с точки зрения физики и химии не что иное, как слабый электролит, в котором концентрация солей не должна превышать 1 г/л.
   Рис. 2. Процесс диссоциации

   В силу своей способности ослаблять межатомные и межмолекулярные связи вода является великим разрушителем, способным растворить что угодно: одни вещества – соль, сахар, всевозможные газы – со зримой быстротой, другие – металлы, твердые горные породы – более медленно, незаметно для глаза, но неотвратимо. Поэтому, например, не может быть идеальной дистиллированной воды – попав в сосуд, она тут же начинает растворять его стенки, и среди молекул H₂O появляется ничтожная примесь инородных молекул материала сосуда.
   В заключение напомню еще об одном замечательном свойстве воды. Если расплавить любое твердое тело, то его объем увеличится, а это означает, что плотность всех твердых тел больше плотности соответствующих жидкостей, то есть они тонут в своих расплавах. У воды же все наоборот! При охлаждении и превращении в твердую фазу объем воды увеличивается, а плотность уменьшается – то есть лед не тонет, а плавает в воде. В противном случае, если бы лед тонул, все наши водоемы промерзали бы зимой до самого дна и были бы безжизненными. В том числе и Ледовитый океан, который являлся бы такой же многокилометровой толщей льдов, как Антарктида.



   В Российской Федерации устанавливается государственная собственность на водные объекты.
 Водный кодекс РФ, статья 34

   Лицензия на водопользование является актом специально уполномоченного государственного органа управления использованием и охраной водного фонда.
 Водный кодекс РФ, статья 48


   Чтобы вы могли представить, сколько и какой воды имеется на нашей планете, предлагаю вашему вниманию табл. 2.1. Воды у нас столь много, что измерять ее литрами, кубометрами или тоннами крайне неудобно, и мы будем использовать меру поистине титаническую – кубический километр (км³). Всего воды на Земле около полутора миллиардов, или 1500 млн. км³ воды.
 //-- Таблица 2.1. Распределение вод на земном шаре (единица измерения – миллион кубических километров) --// 
   Примечание. Данные в таблице приведены по минимуму и максимуму, с учетом разных оценок.

   Итак, мы видим, что пресные воды, то есть воды на суше и в атмосфере, составляют порядка 10 % полного планетарного ресурса. Большая их часть – и это может вызвать удивление – находится не в открытых водоемах, а в земной коре: 110–190 млн. км³! Эти воды принято делить на два типа в соответствии с глубиной их залегания. Подземные воды глубокого залегания расположены в десятках-сотнях метров от поверхности земли, они пропитывают пористые горные породы, а также образуют гигантские подземные бассейны, окруженные водонепроницаемыми слоями. Нередко вода в этих подземных полостях находится под давлением, и, если пробиться к ним с помощью буровой установки, вода брызнет вверх фонтаном. Такие фонтаны-гейзеры и родники природного происхождения хорошо известны.
   Другой тип подземных вод – те, которые расположены в почве и верхних слоях земной поверхности на глубине нескольких метров. По сравнению с водами глубокого залегания у них есть один недостаток и одно преимущество. Недостаток: эти воды гораздо активнее контактируют с поверхностью земли и всем, что на нее сливают, выбрасывают или в нее закапывают; они гораздо слабее защищены от загрязнений, чем воды глубокого залегания. Преимущество: эти воды нам гораздо доступнее, они выступают в любой яме или канаве, и мы можем черпать их из колодцев.
   Следующий по величине массив пресных вод (20–30 млн. км³) сосредоточен в ледниках Антарктиды, Гренландии и островов Северного Ледовитого океана. Пресную воду из атмосферы (всего 13 тыс. км³) мы получаем в виде осадков – дождя и снега. Основной запас пресной воды, употребляемой человеком, сосредоточен в озерах [7 - Одно из крупнейших озерных хранилищ воды – Байкал: около 20 тыс. км³ воды. На сегодняшний день байкальская вода считается самой чистой в мире; ее, например, можно охарактеризовать следующими параметрами [17]: содержание (в мкг/л) свинца – 0,7 (ПДК = 10), кадмия – 0,02 (ПДК = 1), ртути – 0,1 (ПДК = 1), мышьяка – 0,3 (ПДК = 10).] и реках, причем надо учитывать, что, хотя реки протяженнее озер, их объем намного меньше. В живых организмах, то есть в растениях и животных (которые, напомню, на две трети состоят из воды), содержится 6 тыс. км³ воды – величина, вполне сравнимая с объемом рек. Последнее не должно удивлять: одномоментный объем рек – это статика, а если рассматривать динамику, то лишь реки России переносят за год в океан 4 тыс. км³ воды.
   Так распределены водные ресурсы на нашей планете. Проанализировав данные таблицы, можно сделать вывод, что для питья, бытовых и промышленных нужд более доступными являются прежде всего воды озер и рек, снабжающие нас пресной водой не время от времени, а постоянно и с гарантией. К тому же эти запасы мы можем легко оценить и сопоставить с нашими сегодняшними и перспективными потребностями.
   Доступны также и подземные воды обоих типов. Однако для крупных городов подземных вод недостаточно. В принципе, можно разведывать большие бассейны глубокого залегания и бурить скважины, но это дорого. К тому же кто гарантирует, что такой бассейн обнаружится вблизи населенного промышленного города? Будет ли вода в нем подходящей для питья, и не случится ли геологической катастрофы, если мы начнем изымать эту воду в больших количествах?
   Осадки, то есть дождь и снег, также являются источниками пресной воды. Но это непостоянный, капризный источник, удовлетворяющий в основном потребности сельского хозяйства.
   Значит, все-таки остаются реки и озера, и при этом реки для нас удобнее озер: воды в них меньше, но, как я уже упоминал, они гораздо протяженнее. Собственно, большая часть нашей цивилизации сосредоточена в речных долинах – обстоятельство, оставшееся неизменным со времен Древнего Египта, Аккада и Шумера. [8 - Большой вопрос, что пили древние египтяне – вряд ли воду из Нила. Ее и сейчас нельзя пить, и в ней не стоит купаться, так как в этой воде обитают патогенные микроорганизмы. Например, в середине ХХ века около половины сельского населения Нижнего Египта страдало бильхарциозом и анкилостомозом – опасными болезнями, которые вызывают обитающие в воде паразиты.]


   Перед тем как перейти к рассмотрению видов пресной воды, остановимся на их главном назначении: они – источник утоления жажды. Когда она настигает нас, мы не можем думать ни о чем, кроме воды. Тогда любая пресная вода – хоть из грязной речки, хоть из лужи – становится для нас питьевой. Если мы не можем удовлетворить жажду в течение нескольких дней, нас ожидает гибель. Число дней определяется погодой и климатом: жарким, сухим или влажным.
   Мы, как и любые животные, находимся в состоянии непрерывного водного обмена с окружающей средой: выделяем пот и мочу и восполняем водные потери пресной влагой. Если нет возможности напиться, то вода теряется с потом и с выдыхаемым воздухом, и в результате наступает угроза обезвоживания (дегидратации) организма. На первой стадии учащается пульс, возникает слабость, затем – головокружение и одышка. При обезвоживании, составляющем всего лишь 10 % от массы тела, произойдут нарушение речи, зрения и слуха, затем – бред, галлюцинации и потеря сознания. Гибель наступает от необратимых изменений в нервной и сердечно-сосудистой системах при водопотере 15–25 % от массы тела (в зависимости от температуры окружающей среды).
   Такова смерть от жажды, и она тем более трагична, когда происходит в море или в океане, полном воды, – но соленой! Однако многие, наверное, помнят о путешествии Алена Бомбара, французского исследователя, переплывшего Атлантический океан в надувной лодочке и утолявшего жажду морской водой и соком, выдавленным из рыбы. Возможно ли это? Как исключение – да! Но только как исключение, как способ спасти свою жизнь в экстремальной ситуации, ибо длительный срок мы не можем пить соленую воду.
   В морской и океанской воде присутствуют сульфат и карбонат кальция, хлорид, сульфат и бромид магния, но в небольших количествах. Почти 85 % морских и океанских солей – это хлорид натрия, обычная поваренная соль. По насыщению солями вода различна в разных морях и океанах. Я ощутил это на собственном опыте, купаясь в Балтийском, Черном и Средиземном морях. Финский залив почти пресноводный: в 1 л его воды 3–4 г солей, в Черном море – 15–18 г/л, в океане – до 35 г/л, а, например, в Красном море – 40 г/л. Плавать удобно, но пить нельзя. Человеку жизненно необходимы соли калия, натрия, магния, кальция и других элементов, но в умеренных дозах. Мы не можем пить воду с содержанием солей больше 2,5 г/л.
   Почему? Для сохранения в организме солевого равновесия человеку требуется 15–25 г соли в день – в основном NaCl, которую мы получаем с пищей. При избытке соль выводится с мочой через почки, [9 - Напомню, что почки – очистительная система нашего организма, через которую выводятся все вещества, избыток их грозит нам неприятностями – соли, сахар из крови (при диабете), красители и тому подобное.] но для вывода одного лишнего грамма соли надо выпить 100 г воды.
   Ну, теперь вы убедились, что без воды, как поется в песне, «не туды и не сюды»? Только надо уточнить – без пресной воды.
   В главе 1 я упомянул о том, что пресную воду можно разделить на две группы: обычная и минеральная. Причем в рамках каждой группы вода сильно отличается по составу в связи с геологическими и географическими причинами. Эта классификация справедлива для вод естественного происхождения, но, помимо них, существуют искусственные воды, создаваемые человеком целенаправленно или в качестве отходов хозяйственной деятельности. Целенаправленно мы производим искусственные минеральные воды, опресненную воду (из морской) и дистиллированную воду, а также особые воды, насыщенные тем или иным компонентом, например серебряную. Что же касается жидких отходов, то их именуют сливами, сбросами и сточными водами. Разумеется, сточные воды нельзя отнести ни к пресным, ни к соленым морским, но в рамках этой книги нам необходимо с ними ознакомиться. Итак, если учесть все эти группы вод, то наша первичная классификация будет более или менее полной. Начнем рассмотрение с дистиллированной воды.


   Дистиллированная вода – это чистая H₂O, а если говорить точнее, вода с ничтожными, практически неопределимыми химическими и физическими методами примесями инородных веществ. Используется она лишь для медицинских или исследовательских целей, например для того, чтобы вымыть пробирки для проведения тонких химических опытов. Ее производят путем выпаривания обычной пресной воды с последующей конденсацией пара. Точно так же мы можем поступить с морской водой, чтобы избавить ее от солей и минеральных включений. Дистиллированную воду можно вырабатывать в домашних условиях, сделав самодельный дистиллятор либо купив специальную установку. Но я вам не советую этим заниматься – дистиллированная вода для нас совершенно бесполезна: она не поддерживает жизненно важных процессов в организме человека и животного. Как уже не раз упоминалось, необходимая нам питьевая вода вовсе не идеально чистый субстрат, а раствор, содержащий минеральные добавки. В этих добавках – железе, меди, солях натрия, калия, кальция и других элементах – главная суть. Если мы не получим их в нужном количестве через воду, возникнут различные функциональные расстройства: нарушение сердечного ритма, головные боли, мышечные судороги, а также проблемы с зубами и костными тканями. Словом, дистиллированная вода, не содержащая солей, способна разбалансировать работу нашего организма.


скачать книгу бесплатно

страницы: 1 2 3 4 5 6 7 8 9 10

Поделиться ссылкой на выделенное